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In recent years, the mechanical support of blood circulation has proved to 

be a vital therapy for a terminal heart failure, and is considered as a 

"bridge" to transplantation or is used on a permanent basis in a patient who 

can not be included in the waiting list for a donor organ. Recent studies of 

the critical heart failure treatment during an assist device in situ have shown 

the myocardial recovery at the molecular and cellular levels. However, the 

transition of these changes to a functionally stable recovery of the heart 

function, which would allow the long-term results to be achieved without a 

heart transplant or switching off the mechanical support, is now rather an 

exception to the rule. At this time, the cause of the discrepancy between the 

high rate of recovery at the cellular and molecular levels and the low rate of 

cardiac function recovery remains poorly understood. Patients with chronic 



progressive heart failure can demonstrate the normalization of many 

structural myocardial abnormalities after a mechanical support that is 

actually a reverse remodeling. However, the reverse remodeling is not 

always considered equivalent to clinical recovery. The aim of this research 

is to study a significant improvement in the structure and function of the 

myocardium during the mechanical support of blood circulation. 
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Rationale 

Technological advances in cardiac surgery in recent years have 

rapidly gained momentum. Mechanical circulatory support (MCS) during 

times of donor organ shortage is currently an important tool in the treatment 

of critical heart failure (HF). Being used as a bridge to transplantation or the 

therapy of choice, the MCS devices improve the quality of life and overall 

survival of patients when all other conservative treatment options are 

exhausted [1-3]. HF-associated remodeling that includes changes in cellular, 

structural and functional changes in the myocardium, until recently, has been 

considered unidirectional, progressive, and irreversible. However, it has 

been shown that irreversibility can be avoided in whole or in part after 

unloading the myocardium by using circulatory assist devices. 



Thus, the initial “bridge to transplantation” can turn into a “bridge to 

recovery”, which ultimately allows you to remove an MCS device without 

subsequent heart transplantation (HT). Although myocardial recovery at the 

cellular, molecular, and genomic levels was often observed after a MCS 

device implantation [4–7], the transformation of these changes ino a 

functional recovery at the organ level was less frequently observed; and a 

stable improvement in heart function, which could provide a long-term result 

without HT after MCS removal was observed in a relatively small number of 

patients [8–13]. It was noted that acute myocarditis and some variants of 

cardiomyopathy could completely regress with use the left ventricle (LV) 

assist device [14].  

There is still little data on the results of patients after MCS removal, 

but their results are encouraging [4–6, 15–20].  

This article summarizes the knowledge on myocardial recovery during 

a long-term MC use.  

 

"Remodeling of the heart" 

Myocardium remodeling is characterized as an acquired pathological 

heart condition leading to a rearrangement of normally existing structures, 

and, as a rule, affects two components of the cardiovascular system, namely 

myocardium and blood vessels, which structures can be altered by adverse 

conditions caused by several harmful factors that increase cell stress [21]. In 

response to the increased load, individual cardiomyocytes respond by an 

adaptive hypertrophic growth, that is, they increase the size, volume, and 

mass of cells or undergo apoptosis, respectively [22, 23]. The result is the 

expansion of the heart and increased sphericity [21]. Despite the fact that the 

dilatation and sphericity are compensatory and damper mechanisms, all this 



ultimately leads to a chronic heart failure [22, 23]. The dilation is 

accompanied by increased tensions of ventricle walls, which leads to a 

decreased coronary blood flow, an impaired pumping function, and a 

decreased cardiac output [24]. In addition, interstitial fibrosis is observed, 

which further complicates the systolic and diastolic functions of the heart 

[25]. 

  

"Reverse remodeling of the heart" 

After MCS, a decrease in hypertrophy and myocardial dilatation may 

be observed. Echocardiography revealed a decrease in the LV diameter and 

an increase in the ejection fraction [26–28]. A significant decrease in the 

diameter of cardiomyocytes was shown. A decrease in the length and 

volume of cardiomyocytes has been repeatedly described as a morphological 

relationship of a decrease in myocardial hypertrophy [29, 30].  

   

Mechanical circulatory support effects at the tissular, cellular, 

and subcellular levels 

Cardiomyocytes 

Cardiomyocytes account for ≈ 35% of the number of cells in the heart, 

and 70% of the total heart mass [31]. It has been shown many times that LV 

unloading leads to the regression of cardiomyocyte hypertrophy [32, 33]. 

Cardiomyocytes undergo severe remodeling during progressive heart failure, 

while changing the volume. Hematoxylin and eosin staining of myocardial 

samples from patients with end-stage HF shows an increase in a 

cardiomyocyte size, followed by a decrease after a long-term MCS [33, 3 4]. 

At the same time, the regression of cell hypertrophy occurring during LV 

unloading is not necessarily associated with clinical and functional recovery 



[13]. However, the issue of whether a long-term mechanical unloading has 

an effect on the main pathways of the degradation of proteins that have been 

implicated in cardiac hypertrophy and remodeling, is still poorly known [35 

- 37]. 

  

Contractile dysfunction, Ca
2+

 metabolism, and cytoskeletal proteins 

It was shown that contractile defects of cardiomyocytes gradually 

regressed after LV unloading, showing improved shortening and relaxation 

[13, 38]. These interesting effects on the contractile dysfunction can be 

partially explained by the improvement in Ca
2+

 metabolism, namely: a faster 

intake of sarcolemmal Ca
2+

 and a shorter duration of action potential, a 

higher Ca
2+

 content in the sarcoplasmic reticulum, and beneficial changes in 

the calcium L-type channel, an improved function of ryanodine receptors [8, 

12, 28, 39]. The above effects are also associated with favorable changes in 

cytoskeletal proteins: sarcomeric and non-sarcomeric ones, as well as in 

improving the interaction between the integrins being transmembrane 

heterodimeric cell receptors, and the extracellular matrix. The shape of the 

cell and its mobility depend on these bonds [40–44]. 

  

Metabolism and bioenergy 

LV unloading has been shown to be associated with an improvement 

in the respiratory ability of mitochondria, and with an increase in the 

endogenous NO-mediated regulation of mitochondrial respiration [45, 46]. 

In addition, it was shown that cardiolipin, a lipid component of the 

mitochondrial membrane, important for the formation of adenosine 

triphosphoric acid and the substrate transport, is normalized after the LV 

pulsing unloading [47]. Also, a number of studies have shown that after a 



prolonged MCS, the  genes and proteins involved in myocardial remodeling 

are expressed [27, 29, 48, 49]. 

  

Apoptosis and myocardial regeneration 

Apoptosis contributes to the loss of cardiomyocytes and a progressive 

decrease in LV function. Autophagy markers have been shown to be 

suppressed at mechanical support of the LV [27, 50]. These favorable 

changes are supplemented by a decrease in myocardial stress that is 

indicated by a decrease in stress proteins of metallothionein and 

hemoxygenase-1 [51, 52]. The evidence of an increase in circulating bone 

marrow progenitor cells after MCS device implantation, as well as the 

detection of indirect signs of a cell division or the proliferation of progenitor 

cells in myocardial tissue samples obtained during MCS device explantation, 

also indicate a possible myocardial regeneration [53, 54]. 

  

Extracellular matrix 

Extracellular matrix provides the support necessary for regular work 

of cardiomyocytes. Several studies reported a reduction in fibrosis; when 

using digital microscopy methods of analysis, it was found that myocardial 

tissue from patients with heart failure after mechanical support compared 

with normal myocardium had increased interstitial and total fibrosis. 

However, the contents of interstitial and total collagen increased even more 

after MCS in those patients [55]. Whether the observed increase in fibrosis 

and increase in collagen are the manifestations of the further progression of 

heart remodeling, or this is a direct result of MCS, has not been clear yet. 

  

 



Gene expression 

The mechanical myocardial support causes significant changes in the 

expression of myocardial genes involved in remodeling, given the genomes 

being significantly different before and after support. Thus, the reverse 

remodeling is associated with a specific pattern of gene expression [56 - 60]. 

 

Natriuretic peptides, cytokines, and neurohormones 

Against the mechanical support, there occurs a decrease in the level of 

atrial and brain natriuretic peptides, as well as tumor necrosis factor-α in 

both serum and myocardial tissue [12, 61, 62]. Changes in the levels of other 

key neurohormones involved in the progression of HF syndrome have been 

assessed ambiguously. Specifically, the levels of circulating adrenaline, 

noradrenaline, renin, angiotensin II, and vasopressin have been shown to 

decrease during MCS [63]. 

  

Endothelium and microvasculature 

MCS was associated with changes in the expression of genes involved 

in the regulation of vascular organization and migration [64]. Also 

immunohistochemical and ultrastructural evidence of endothelial cell 

activation has been obtained, which is consistent with the observed increase 

in microvessel density [42]. 

  

Beta-adrenergic signaling and sympathetic innervation 

LV unloading has been shown to result in an improved density, 

localization, and nature of beta-adrenergic receptors, a better contractile 

response to beta-adrenergic stimuli and a higher adenylcyclase activity. [8, 

13, 26]. A recent study, using scintigraphy, has shown that MCS leads to the 



improved sympathetic innervation in HF, which is accompanied by clinical, 

functional, and hemodynamic improvements [65]. 

  

The problem of disagreement between clinical and biological 

results 

Meanwhile, the main question arises, why, with such obvious positive 

effects at the cellular and subcellular levels, the circulatory assist devices are 

not considered the main technique for correcting the heart failure. The main 

reasons, in our opinion, are as follows: an attempt to compare the results of 

different clinical and biological studies; the use of high doses of drugs to 

treat the heart failure; a different duration of mechanical circulatory support; 

the change in the generation of mechanical pumps from pulsating to non-

pulsating ones; collecting biopsy from different sites of the left ventricle; a 

lack of a centralized base to analyse and compare such patients; a lack of 

uniform guidelines for weaning from MCS. 

We must also take into account the fact that, despite the considerable 

advances in understanding the pathophysiology of heart failure in recent 

years, many questions on the heart failure mechanism remain unresolved. 

So, in their study L. Mann and R. Bristow showed that current 

hemodynamic, cardiorenal, and neurohormonal models of the heart failure 

pathophysiology are insufficient to explain all aspects of the heart failure 

syndrome. Most importantly, these models can not adequately explain the 

progression of the disease [66]. 

It is likely that the reverse process of heart remodeling will become 

clear after understanding the mechanisms of the heart failure development. 

In addition, the “reverse cardiac remodeling” and a sustained “clinical 

myocardial recovery” are not necessarily synonymous; several studies have 

https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.104.500546?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
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shown that a partial or sometimes almost complete change in the HF 

phenotype at structural, cellular, or molecular levels (i.e. “reverse 

remodeling of the heart”) is not always accompanied by a sustained clinical 

“myocardial recovery” to a similar extent  [67–69]. It is important to note 

that this process may reveal new potential therapeutic targets in heart failure. 

Given that a significant number of previously conducted studies related both 

to heart failure, and to general cardiovascular diseases have focused on 

predicting adverse outcomes, it may now be necessary to focus on 

understanding the process of myocardial recovery. 

  

Conclusion 

Numerous etiological factors, such as chronic ischemia, inflammation, 

or genetic changes, can affect the myocardium and cause quite nonspecific 

compensatory and adaptive changes, including cardiomyocyte hypertrophy. 

And although these adaptive properties initially act as a compensatory 

mechanism, at the final length, they lead to an impairment of the cardiac 

function. An increased myocardial wall tension, and the local ischemia 

might be the mechanisms that activate numerous molecular and cellular 

responses. As a result, the myocardium cannot adapt to increased 

biomechanical stress. Neurohormonal activation, inflammatory mediators, 

changes in beta-adrenergic signaling and Ca
2+

 metabolism, as well as 

interstitial fibrosis, further impair the heart function. 

Despite constantly improving medical strategies, heart transplantation 

remains the only approach with good long-term results. Due to a shortage of 

suitable donor organs, the mechanical circulatory support is currently used to 

maintain cardiac activity in patients with end-stage heart failure prior to 

transplantation, or in patients as a permanent therapy. As mentioned above, 



the use of mechanical circulatory support is associated with changes at the 

cellular, molecular, and genetic levels. Although these results are 

encouraging, only a small number of patients can be weaned from 

circulatory assist devices and avoid transplantation. The approach combining 

the mechanical circulatory support and medical treatment provides 

satisfactory long-term results in patients with various forms of myocarditis, 

as well as with some forms of cardiomyopathy. Another problem in this area 

is the lack of a suitable serum/plasma biomarker that would accurately 

indicate the myocardial recovery during mechanical circulatory support and 

could, possibly, predict the clinical outcome and changes for successful 

weaning from MCS. In conclusion, despite a limited number of patients with 

satisfactory results, a better understanding of the basic biological 

mechanisms of “reverse myocardial remodeling” is crucial for developing 

future therapeutic strategies in this, still intriguing field of science. 
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