The problem of hyperammoniemia after orthotopic liver transplantation
https://doi.org/10.23873/2074-0506-2025-17-2-200-214
Abstract
Background. Currently, there is no doubt that orthotopic liver transplantation increases life expectancy compared to standard treatment methods in patients with decompensated liver cirrhosis. In recent years, diagnostics and treatment of hyperammonemia have attracted increasing attention in various liver diseases, and also after liver transplantation. At the same time, there are few studies with a high level of evidence establishing a relationship between the blood level of ammonia and the severity of patient condition in the early period after liver transplantation.
Objective. To summarize current data on the problem of hyperammonemia after liver transplantation, to analyze the mechanisms of appearing high ammonia concentrations in blood serum and their pathogenetic role in the development of complications after orthotopic liver transplantation, and also to investigate the methods for monitoring the blood ammonia levels.
Material and methods. The analysis of data from world experimental and clinical studies on the pathogenesis, diagnostics, and treatment methods of hyperammonemia after orthotopic liver transplantation has been made. The literature search was conducted in international databases (PubMed/MedLine, ResearchGate), as well as in the scientific electronic library of Russia (eLIBRARY.RU) for the period from 2019–2024.
Conclusion. In the analyzed publications, the issues on the problem of hyperammonemia after liver transplantation are worthwhile to be addressed to. Despite advances in understanding the pathogenesis of hyperammonemia and its impact on the development of hepatic encephalopathy and disorders on the part of other body organs and systems, many unresolved issues remain both in diagnosis and in choosing the most effective treatment methods.
About the Authors
S. V. ZhuravelRussian Federation
Sergey V. Zhuravel - Assoc. Prof., Dr. Sci. (Med.), Head of the Scientific Department of Anesthesiology and Critical Care Medicine
3 Bolshaya Sukharevskaya Sq., Moscow 129090
P. Yu. Falevko
Russian Federation
Polina Yu. Falevko - Anesthesiologist-Intensivist, Junior Research Fellow, Anesthesiology and Intensive Care Department No. 9
3 lit. A Budapeshtskaya St., St. Petersburg 192242
V. A. Manukovskiy
Russian Federation
Vadim A. Manukovsky - Prof., Dr. Sci. (Med.), Director of the St. Petersburg I.I. Dzhanelidze Research Institute for Emergency Medicine
3 lit. A Budapeshtskaya St., St. Petersburg 192242
M. E. Malyshev
Russian Federation
Mikhail E. Malyshev - Dr. Sci. (Biol.), Head of the City Laboratory of Immunogenetics and Serodiagnosis, St. Petersburg I.I. Dzhanelidze Research Institute for Emergency Medicine; Professor of the Department of Oral and Maxillofacial Surgery and Surgical Dentistry, St. Petersburg State University
3 lit. A Budapeshtskaya St., St. Petersburg 192242
7–9 Universitetskaya Emb., St. Petersburg 199034
References
1. Battistella S, Grasso M, Catanzaro E, D'Arcangelo F, Corrà G, Germani G, et al. Evolution of liver transplantation indications: expanding horizons. Medicina (Kaunas). 2024;60(3):412. PMID: 38541138 htpps://doi.org/10.3390/medicina60030412
2. Häberle J, Siri B, Dionisi-Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis. 2024;47(6):1120-1128. PMID: 38837457 https://doi.org/10.1002/jimd.12763
3. Krutsinger D, Pezzulo A, Blevins AE, Reed RM, Voigt MD, Eberlein M. Idiopathic hyperammonemia after solid organ transplantation: primarily a lung problem? A single-center experience and systematic review. Clin Transplant. 2017;31(5):e12957. PMID: 28295601 https://doi.org/10.1111/ctr.12957
4. Lichtenstein GR, Yang YX, Nunes FA, Lewis JD, Tuchman M, Tino G, et al. Fatal hyperammonemia after orthotopic lung transplantation. Ann Int Med. 2000;132(4):283–287. PMID: 10681283 http://doi.org/10.7326/0003-4819-132-4-200002150-00006
5. Catherine Ch, Bain KB, Iuppa JA, Yusen RD, Byers DE, Patterson GA, et al. Hyperammonemia syndrome after lung transplantation: a single center experience. Transplantation. 2016;100(3):678– 684. PMID: 26335916 http://doi.org/10.1097/TP.0000000000000868
6. Seethapathy H, Fenves AZ. Pathophysiology and management of hyperammonemia in organ transplant patients. Am J Kidney Dis. 2019;74(3):390–398. PMID: 31040091 http://doi.org/10.1053/j.agkd.2019.03.419
7. Plöchl W, Plöchl E, Pokorny H, Kozek-Langenecker S, Zacherl J, Stöckler-Ipsiroglu S, et al. Multiorgan donation from a donor with unrecognized ornithine transcarbamylase deficiency. Transplant Int. 2001;14(3):196-201. PMID: 11499911 http://doi.org/10.1007/s001479900134
8. Jalan R, De Chiara F, Balasubramaniyan V, Andreola F, Khetan V, Malago M, et al. Ammonia produces pathological changes in human hepatic stellate cells and is a target for therapy of portal hypertension. J Hepatol. 2016;64(4):823–833. PMID: 26654994 http://doi.org/10.1016/j.jhep.2015.11.019
9. Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int. 2020;140:104809. PMID: 32758585 http://doi.org/10.1016/j.neuint.2020.104809
10. Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495– 1511. PMID: 22921946 http://doi.org/10.1016/j.metabol.2012.07.007
11. Olde Damink SW, Jalan R, Dejong CH. Interorgan ammonia trafficking in liver disease. Metab Brain Dis. 2009;24(1):169– 181. PMID: 19067143 http://doi.org/10.1007/s11011-008-9122-5
12. Long MT, Coursin DB. Undifferentiated non-hepatic hyperammonemia in the ICU: Diagnosis and management. J Crit Care. 2022;70:154042. PMID: 35447602 http://doi.org/10.1016/j.jcrc.2022.154042
13. Weiner ID, Verlander JW. Renal ammonia metabolism and transport. Compr Physiol. 2013;3(1):201–220. PMID: 23720285 http://doi.org/10.1002/cphy.c120010
14. Bourgeois S, Houillier P. State of knowledge on ammonia handling by the kidney. Pflugers Arch. 2024;476(4):517– 531. PMID: 38448728 http://doi.org/10.1007/s00424-024-02940-1
15. La M, Reid JJ. Endothelin-1 and the regulation of vascular tone. Clin Exp Pharmacol Physiol. 1995;22(5):315– 323. PMID: 7554421 http://doi.org/10.1111/j.1440-1681.1995.tb02008.x
16. Ghabril M, Nguyen J, Kramer D, Genco T, Mai M, Rosser BG. Presentation of an acquired urea cycle disorder post liver transplantation. Liver Transpl. 2007;13(12):1714-1716. PMID: 18044746 http://doi.org/10.1002/lt.21291
17. Ali R, Nagalli S. Hyperammonemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. PMID: 32491436
18. Chen H, Yang C, Yan S, Liu X, Zhou L, Yuan X. Sarcopenia in cirrhosis: from pathophysiology to interventional therapy. Exp Gerontol. 2024;196:112571. PMID: 39236869 http://doi.org/10.1016/j.exger.2024.112571
19. Weber ML, Ibrahim HN, Lake JR. Renal dysfunction in liver transplant recipients: evaluation of the critical issues. Liver Transpl. 2012;18(11):1290– 1301. PMID: 22847917 http://doi.org/10.1002/lt.23522
20. Hussaini T, Yoshida EM, Partovi N, Erb SR, Scudamore C, Chung S, et al. Early persistent progressive acute kidney injury and graft failure post liver transplantation. Transplant Direct. 2019;5(3):e429. PMID: 30882034 http://doi.org/10.1097/TXD.0000000000000868
21. Barritt AS 4th, Fried MW, Hayashi PH. Persistent portosystemic shunts after liver transplantation causing episodic hepatic encephalopathy. Dig Dis Sci. 2010;55(6):1794–1798. PMID: 19655248 http://doi.org/10.1007/s10620-009-0901-6
22. Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev. 2014;258(1):132–144. PMID: 24517430 http://doi.org/10.1111/imr.12146
23. Vicente H-R, Agusti A, Cabrera-Pastor A, Fustero S, Delgado O, Taoro-Gonzalez L, et al. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation. 2015;12:195. PMID: 26511444 http://doi.org/10.1186/s12974-015-0420-7
24. Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation. 2018;15(1):36. PMID: 29422059 http://doi.org/10.1186/s12974-018-1082-z
25. Pun CK, Huang HC, Chang CC, Hsu SJ, Huang YH, Hou MC, et al. Hepatic encephalopathy: from novel pathogenesis mechanism to emerging treatments. J Chin Med Assoc. 2024;87(3):245–251. PMID: 38109364 http://doi.org/10.1097/JCMA.0000000000001041
26. Phillips SM, Pouch SM, Lo DJ, Kandiah S, Lomashvili KA, Subramanian RA, et al. A case of “cryptammonia”: disseminated cryptococcal infection generating profound hyperammonemia in a liver transplant recipient. J Investig Med High Impact Case Rep. 2022;10:23247096221129467. PMID: 36214295 http://doi.org/10.1177/23247096221129467
27. Baker RP, Schachter M, Phillips S, Kandiah S, Farrque M, Casadevall A, et al. Host and fungal factors both contribute to cryptococcosis-associated hyperammonemia (cryptammonia). Microbiol Spectr. 2024;12(7):e0390223. PMID: 38842310 http://doi.org/10.1128/spectrum.03902-23
28. Kolopaking MS. Urease, gastric bacteria and gastritis. Acta Med Indones. 2022;54(1):1–2. PMID: 35398819
29. Mouat S, Bishop J, Glamuzina E, Chin S, Best EJ, Evans HM. Fatal hyperammonemia associated with disseminated Serratia marcescens infection in a pediatric liver transplant recipient. Pediatr Transplantation. 2018;22(4):e13180. PMID: 29624817 http://doi.org/10.1111/petr.13180
30. Duarte T, Fidalgo P, Karvellas CJ, Cardoso FS. What every Intensivist should know about ... Ammonia in liver failure. J Crit Care. 2024;81:154456. PMID: 37945461 http://doi.org/10.1016/j.jcrc.2023.154456
31. Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol. 2020;73(6):1526–1547. PMID: 33097308 https://doi.org/10.1016/j.jhep.2020.07.013
32. Deutsch-Link S, Moon AM, Jiang Y, Barritt AS 4th, Tapper EB. Serum ammonia in cirrhosis: clinical impact of hyperammonemia, utility of testing, and national testing trends. Clin Ther. 2022;44(3):e45–e57. PMID: 35125217 https://doi.org/10.1016/j.clinthera.2022.01.008
33. Lazebnik LB, Golovanova EV, Alekseenko SA, Bueverov AO, Plotnikova EYu, Dolgushina AI, et al. Russian Consensus “Hyperammonemia in Adults” (Version 2021). Eksperimental'naya i klinicheskaya gastroenterologiya. 2021;(3):97–118. (In Russ.). https://doi.org/10.31146/1682-8658-ecg-187-3-97-118
34. Gupta S, Fenves AZ, Hootkins R. The role of RRT in hyperammonemic patients. Clin J Am Soc Nephrol. 2016;11(10):1872–1878. PMID: 27197910 https://doi.org/10.2215/CJN.01320216
35. Bernal W, Lee WM, Wendon J, Larsen FS, Williams R. Acute liver failure: a curable disease by 2024? J Hepatol. 2015;62(1 Suppl):S112–120. PMID: 25920080 https://doi.org/10.1016/j.jhep.2014.12.016
36. Butterworth RF. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs RD. 2021;21(2):123–132. PMID: 33890246 https://doi.org/10.1007/s40268-021-00345-4
37. Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5(5):CD001939. PMID: 28518283 https://doi.org/10.1002/14651858.CD001939.pub4
38. Jalan R, O Damink SW, Deutz NE, Lee A, Hayes PC. Moderate hypothermia for uncontrolled intracranial hypertension in acute liver failure. Lancet. 1999;354(9185):1164–1168. PMID: 10513710 https://doi.org/10.1016/s0140-6736(98)12440-6
39. Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile duct-ligated rats. Hepatology. 2011;53(6):1995–2002. PMID: 21384402 https://doi.org/10.1002/ hep.24273
40. Agarwal B, Cañizares RB, Saliba F, Ballester MP, Tomescu DR, Martin D, et al. Randomized, controlled clinical trial of the DIALIVE liver dialysis device versus standard of care in patients with acute-on-chronic liver failure. J Hepatol. 2023;79(1):79–92. PMID: 37268222 https://doi.org/10.1016/j.jhep.2023.03.013
41. Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975. PMID: 30651324 https://doi.org/10.1126/scitranslmed.aau7975
42. Song G, Kerbet A, Jones H, Arias N, Davies N, Andreola F, et al. PS-149-recombinant glutamine synthetase: a novel strategy for the treatment of hyperammonemia and consequent hepatic encephalopathy in rodent model of cirrhosis and urea cycle enzyme deficiency. J Hepatol. 2019;70(1):e93–e94. https://doi.org/10.1016/S0618-8278(19)30167-7
43. Lévesque R, Leblanc M, Cardinal J, Teitlebaum J, Skrobik Y, Lebrun M. Haemodialysis for severe hyperammonaemic coma complicating urinary diversions. Nephrol Dial Transplant. 1999;14(2):458–461. PMID: 10069214 https://doi.org/10.1093/ndt/14.2.458
44. Naorungroj T, Yanase F, Eastwood GM, Baldwin I, Bellomo R. Extracorporeal ammonia clearance for hyperammonemia in critically Ill patients: a scoping review. Blood Purif. 2021;50(4-5):453–461. PMID: 33279903 https://doi.org/10.1159/000512100
45. Slack AJ, Auzinger G, Willars C, Dew T, Musto R, Corsilli D, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34(1):42–48. PMID: 23786538 https://doi.org/10.1111/liv.12221
46. Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R. Pre-dilution vs. post-dilution during continuous venovenous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract. 2003;94(4):c94–98. PMID: 12972719 https://doi.org/10.1159/000072492
47. Fisher C, Baldwin I, Fealy N, Naorungroj T, Bellomo R. Ammonia clearance with different continuous renal replacement therapy techniques in patients with liver failure. Blood Purif. 2022;51(10):840–846. PMID: 35042216 https://doi.org/10.1159/000521312
48. Dong V, Karvellas CJ. Liver assistive devices in acute liver failure: current use and future directions. Best Pract Res Clin Gastroenterol. 2024;73:101964. PMID: 39709218 https://doi.org/10.1016/j.bpg.2024.101964
49. Krisper P, Haditsch B, Stauber R, Jung A, Stadlbauer V, Trauner M, et al. In vivo quantification of liver dialysis: comparison of albumin dialysis and fractionated plasma separation. J Hepatol. 2005;43(3):451–7. PMID: 16023249 https://doi.org/10.1016/j.jhep.2005.02.038
50. MacDonald AJ, Karvellas CJ. Emerging role of extracorporeal support in acute and acute-on-chronic liver failure: recent developments. Semin Respir Crit Care Med. 2018;39(5):625– 634. PMID: 30485892 https://doi.org/10.1055/s-0038-1675334
51. Maiwall R, Bajpai M, Singh A, Agarwal T, Kumar G, Bharadwaj A, et al. Standard-volume plasma exchange improves outcomes in patients with acute liver failure: a randomized controlled trial. Clin Gastroenterol Hepatol. 2022;20(4):e831–e854. PMID: 33524593 https://doi.org/10.1016/j.cgh.2021.01.036
52. Larsen FS, Saliba F. Liver support systems and liver transplantation in acute liver failure. Liver Int. 2025;45(3):e15633. PMID: 37288706 https://doi.org/10.1111/liv.15633
Review
For citations:
Zhuravel S.V., Falevko P.Yu., Manukovskiy V.A., Malyshev M.E. The problem of hyperammoniemia after orthotopic liver transplantation. Transplantologiya. The Russian Journal of Transplantation. 2025;17(2):200-214. https://doi.org/10.23873/2074-0506-2025-17-2-200-214