Preview

Transplantologiya. The Russian Journal of Transplantation

Advanced search

Problems and prospects of bone-cartilage grafts′ preservation

https://doi.org/10.23873/2074-0506-2025-17-4-494-503

Abstract

Introduction. Articular hyaline cartilage has special structural and functional characteristics, which are critically important for preserving tissue grafts, containing cartilage elements. Allogeneic bone-cartilage grafts (BCG) could be very perspective in the treatment of joint defects. However, the widespread clinical use of BCG shows significant difficulties, associated with effective choice of preservation and sterilization methods.

The aim of the study was to analyze modern methods of allogeneic BCG-preserving, according to their effect on the structural integrity of tissue, biomechanical properties and cellular viability.

Material and methods. We systematized data from scientific publications selected in the Scopus, PubMed, eLibrary, and CyberLeninka databases for the period from 1980 to 2024, with a focus on research published over the past 15 years.

Results. Cryopreservation is considered as the most convenient method for long-term storage of BCG, however, its effectiveness significantly depends on the optimization of protocols, including the selection of adequate cryoprotectors, freezing and thawing modes. Lyophilization successfully allows to preserve bone part of BCG, but it causes significant deformation of cartilaginous part, loss of its structural organization and mechanical properties. BCG-storage in liquid culture media and solutions ensures short-term preservation of the graft (about 2–3 weeks), longer storage is accompanied with progressive decrease of biomechanical characteristics and the development of matrix edema. The use of chemical agents (aldehydes, alcohols, glycerol) for BCG-preservation seems impractical due to their pronounced cytotoxic effect and negative effect on tissue architecture. Supercritical CO2 treatment is considered as potentially promising method, targeted on combining tissue sterilization and preservation of structural properties.

Conclusion. The development of effective methods for preserving allogeneic BCG, ensuring the maintenance of their structural and functional characteristics, remains an urgent interdisciplinary task, requiring integration of advances in cell biology, cryobiology and tissue engineering. At the current stage, cryopreservation is the most reasonable approach, while other methods require further experimental and clinical verification.

About the Authors

A. A. Budaev
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Anton A. Budaev - Researcher, Scientific Department of Biotechnologies and Transfusiology, N.V. Sklifosovsky Research Institute for Emergency Medicine.

3 Bolshaya Sukharevskaya Sq., Moscow 129090



M. S. Makarov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Maksim S. Makarov - Dr. Sci. (Biol.), Senior Researcher, Scientific Department of Biotechnologies and Transfusiology, N.V. Sklifosovsky Research Institute for Emergency Medicine.

3 Bolshaya Sukharevskaya Sq., Moscow 129090



N. V. Borovkova
N.V. Sklifosovsky Research Institute for Emergency Medicine; N.I. Pirogov Russian National Research Medical University (Pirogov University); Russian Medical Academy of Continuous Professional Education
Russian Federation

Natalya V. Borovkova - Dr. Sci. (Med.), Head of the Scientific Department of Biotechnologies and Transfusiology, N.V. Sklifosovsky Research Institute for Emergency Medicine; Associate Professor of the V.P. Demikhov Department of Transplantology and Artificial Organs, N.I. Pirogov Russian National Research Medical University (Pirogov University); Associate Professor of the Department of Clinical Laboratory Diagnostics with a Course in Laboratory Immunology, Russian Medical Academy of Continuous Professional Education.

3 Bolshaya Sukharevskaya Sq., Moscow 129090; 1 Ostrovityanov St., Moscow 117997; 2/1 Bldg. 1 Barrikadnaya St., Moscow 125993



A. A. Ofitcerov
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Andrey A. Ofitserov - Researcher, Scientific Department of Biotechnologies and Transfusiology, N.V. Sklifosovsky Research Institute for Emergency Medicine.

3 Bolshaya Sukharevskaya Sq., Moscow 129090



I. N. Ponomarev
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Ivan N. Ponomarev - Cand. Sci. (Med.), Senior Researcher, Scientific Department of Biotechnologies and Transfusiology, N.V. Sklifosovsky Research Institute for Emergency Medicine.

3 Bolshaya Sukharevskaya Sq., Moscow 129090



I. Yu. Miguleva
N.V. Sklifosovsky Research Institute for Emergency Medicine
Russian Federation

Irina Yu. Miguleva - Dr. Sci. (Med.), Senior Researcher, Department of Emergency Traumatology of the Musculoskeletal System, N.V. Sklifosovsky Research Institute for Emergency Medicine.

3 Bolshaya Sukharevskaya Sq., Moscow 129090



References

1. Shilko SV, Ermakov SF. The role of liquid phase and porous structure of cartilage in formation of biomechanical properties of joints. Part 1. Russian Journal of Biomechanics. 2008;12(2):31–40. (In Russ.).

2. Boyan BD, Dean DD, Lohmann CH, Niederauer GG, McMillan J, Sylvia VL, et al. Cartilage regeneration. Oral Maxillofac Surg Clin North Am. 2002;14(1):105-116. PMID: 18088614 https://doi.оrg/10.1016/s1042-3699(02)00017-1

3. Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021;80(4):413–422. PMID: 33158879 https://doi.оrg/10.1136/annrheumdis-2020-218089

4. Johnson CC, Johnson DJ, Garcia GH, Wang D, Pais M, Degen RM, et al. High Short-term failure rate associated with decellularized osteochondral allograft for treatment of knee cartilage lesions. Arthroscopy. 2017;33(12):2219–2227. PMID: 28967543 https://doi.оrg/10.1016/j.arthro.2017.07.018

5. Simon TM, Jackson DW. Articular cartilage: injury pathways and treatment options. Sports Med Arthrosc Rev. 2018;26(1):31–39. PMID: 29300225 https://doi.оrg/10.1097/JSA.0000000000000182

6. Egiazaryan KA, Lazishvili GD, Ratyev AP, Sirotin IV, But-Gusaim AB, Danilov MA, et al. Modern trends in the treatment of focal cartilage defects of the knee. Surgical practice (Russia). 2020;(3):65–72. (In Russ.). https://doi.org/10.38181/2223-2427-2020-3-65-72

7. Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, et al. Biomechanical stimulus based strategies for meniscus tissue engineering and regeneration. Tissue Eng Part B Rev. 2018;24(5):392–402. PMID: 29897012 https://doi.оrg/10.1089/ten.TEB.2017.0508

8. Farr J, Gracitelli GC, Shah N, Chang EY, Gomoll AH. High failure rate of a decellularized osteochondral allograft for the treatment of cartilage lesions. Am J Sports Med. 2016;44(8):2015– 2022. PMID: 27179056 https://doi.оrg/10.1177/0363546516645086

9. Gilev YaKh, Milyukov AYu, Ustyantsev DD. Use of osteochondral graft mosaicplasty in patients with knee osteoarthritis. Polytrauma. 2018;(1):32–38. (In Russ.).

10. Insall J. The Pridie debridement operation for osteoarthritis of the knee. Clin Orthop Relat Res. 1974;101:61–67. PMID: 4837919

11. Brittberg M. Treatment of knee cartilage lesions in 2024: From hyaluronic acid to regenerative medicine. J Exp Orthop. 2024;11(2):e12016. PMID: 38572391 https://doi.оrg/10.1002/jeo2.12016

12. Huang Y, Fan H, Gong X, Yang L, Wang F. Scaffold with natural calcified cartilage zone for osteochondral defect repair in minipigs. Am J Sports Med. 2021;49(7):1883-1891. PMID: 33961510 https://doi.оrg/10.1177/03635465211007139

13. Jiang LB, Su DH, Liu P, Ma YQ, Shao ZZ, Dong J. Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen. Osteoarthritis Cartilage. 2018;26(10):1389–1399. PMID: 29944927 https://doi.оrg/10.1016/j.joca.2018.06.004

14. Kotelnikov GP, Volova IT, Lartsev YuV, Dolgushkin DA, Terteryan MA. The new plastic method of articular hyaline cartilage defects with combined cellular-tissue graft. Travmatologija i ortopedia Rossii. 2010;1(55):150-155. (In Russ.).

15. Lazishvili GD, Egiazaryaz K.A., Ratyev AP, Sirotin IV, Gordienrko DI, Chramenkova IV, et al. Hybrid bone and cartilage transplantation – an innovative technique for surgical treatment of osteochondritis dissecans of the knee joint. Kafedra traumatologiji i ortopedii. 2020;1(39):59–66. (In Russ.). https://doi.оrg/10.17238/issn2226-2016.2020.1.59-66

16. Malanin DA, Novochadov VV, Samusev SR, Teterin OG, Suchilin IA, Julikov AL. Innovative technologies in restoration of damaged or diseased knee joint. Vestnik Volgogradskogo gosudarstvennogo medicinskogo universiteta. 2009;2(30):7–13. (In Russ.).

17. Zhang X, Zhang W, Yang M. Application of hydrogels in cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13(7):497–516. PMID: 29046163 https://doi.оrg/10.2174/1574888X12666171017160323

18. Alford JW, Cole BJ. Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sports Med. 2005;33(2):295–306. PMID: 15701618 https://doi.оrg/10.1177/0363546504273510

19. Liu X, Meng H, Guo Q, Sun B, Zhang K, Yu W, et al. Tissue-derived scaffolds and cells for articular cartilage tissue engineering: characteristics, applications and progress. Cell Tissue Res. 2018;372(1):13–22. PMID: 29368258 https://doi.оrg/10.1007/s00441-017-2772-z

20. Triche R, Mandelbaum BR. Overview of cartilage biology and new trends in cartilage stimulation. Foot and Ankle Clinics. 2013;18(1):1–12. PMID: 23465945 https://doi.оrg/10.1016/j.fcl.2012.12.001

21. Lamplot JD, Schafer KA, Matava MJ. Treatment of failed articular cartilage reconstructive procedures of the knee: a systematic review. Orthop J Sports Med. 2018;6(3):2325967118761871. PMID: 29619397 https://doi.оrg/10.1177/232596711876187

22. Landells JW. The reactions of injured human articular cartilage. J Bone Joint Surg Br. 1957;39-B(3):548–562. PMID: 13463046 https://doi.оrg/10.1302/0301-620X.39B3.548

23. Cheng A, Schwartz Z, Kahn A, Li X, Shao Z, Sun M, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev. 2019;25(1):14–29. PMID: 30079807 https://doi.оrg/10.1089/ten.TEB.2018.0119

24. Steadman JR, Rodkey WG, Briggs KK. Microfracture: its history and experience of the developing surgeon. Cartilage. 2010;1(2):78–86. PMID: 26069538 https://doi.оrg/10.1177/1947603510365533

25. Nover AB, Stefani RM, Lee SL, Ateshian GA, Stoker AM, Cook LG, et al. Long-term storage and preservation of tissue engineered articular cartilage. J Orthop Res. 2016;34(1):141–148. PMID: 26296185 https://doi.оrg/10.1002/jor.23034

26. Wright GJ, Brockbank KG, Rahn E, Halwani DO, Chen Z, Yao H. Impact of storage solution formulation during refrigerated storage upon chondrocyte viability and cartilage matrix. Cells Tissues Organs. 2014;199(1):51–58. PMID: 25171188 https://doi.оrg/10.1159/000363134

27. Hu Y, Liu X, Liu F, Xie J, Zhu Q, Tan S. Trehalose in biomedical cryopreservation-properties, mechanisms, delivery methods, applications, benefits, and problems. ACS Biomater Sci Eng. 2023;9(3):1190–1204. PMID: 36779397 https://doi.оrg/10.1021/acsbiomaterials.2c01225

28. Makarov MS. Influence of high dimethylsulfoxide concentrations on human platelets’ biological activity in plasma. Medicinsky Alfavit. Sovremennaya Laboratorija. 2016;2(13(276)):48-51. (In Russ.).

29. Tomford WW, Springfield DS, Mankin HJ. Fresh and frozen articular cartilage allografts. Orthopedics. 1992;15(10):1183–1188. PMID: 1409128 https://doi.оrg/10.3928/0147-7447-19921001-09

30. Wu K, Yong KW, Ead M, Sommerfeldt M, Skene-Arnold TD, Westover L, et al. Vitrified particulated articular cartilage for joint resurfacing: a swine model. Am J Sports Med. 2022;50(13):3671– 3680. PMID: 36259633 https://doi.оrg/10.1177/03635465221123045

31. Brockbank KG, Chen ZZ, Song YC. Vitrification of porcine articular cartilage. Cryobiology. 2010;60(2):217–221. PMID: 20026102 https://doi.оrg/10.1016/j.cryobiol.2009.12.003

32. Yamashita F, Sakakida K, Suzu F, Takai S. The transplantation of an autogeneic osteochondral fragment for osteochondritis dissecans of the knee. Clin Orthop Relat Res. 1985;(201):43–50. PMID: 3905131

33. Sriuttha W, Uttamo N, Kongkaew A, Settakorn J, Rattanasalee S, Kongtawelert P, et al. Ex vivo and in vivo characterization of cold preserved cartilage for cell transplantation. Cell Tissue Bank. 2016;17(4):721–734. PMID: 27522192 https://doi.оrg/10.1007/s10561-016-9577-2

34. Yu H, Al-Abbasi KK, Elliott JA, McGann LE, Jomha NM. Clinical efflux of cryoprotective agents from vitrified human articular cartilage. Cryobiology. 2013;66(2):121–125. PMID: 23291303 https://doi.оrg/10.1016/j.cryobiol.2012.12.005

35. Bugbee W. Editorial commentary: osteochondral allografting is a "Kid-Friendly" cartilage repair procedure. Arthroscopy. 2021;37(5):1597–1598. PMID: 33896511 https://doi.оrg/10.1016/j.arthro.2021.02.027

36. Malinin T, Temple HT, Buck BE. Transplantation of osteochondral allografts after cold storage. J Bone Joint Surg Am. 2006;88(4):762–770. PMID: 16595466 https://doi.оrg/10.2106/JBJS.D.0299

37. Sanz J, Elejabeitia J, Bazán A, García-Tutor E, Paloma V. The viability of cryopreserved onlay cranial bone allografts: a comparative experimental study versus fresh autografts. Ann Plast Surg. 1996;36(4):370–379. PMID: 8728579 https://doi.оrg/10.1097/00000637-199604000-00008

38. Rosa SC, Gonçalves J, Judas F, Lopes C, Mendes AF. Assessment of strategies to increase chondrocyte viability in cryopreserved human osteochondral allografts: evaluation of the glycosylated hydroquinone, arbutin. Osteoarthritis Cartilage. 2009;17(12):1657–1661. PMID: 19751692 https://doi.оrg/10.1016/j.joca.2009.08.016

39. Fan MC, Wang QL, Sun P, Zhan SH, Guo P, Deng WS, et al. Cryopreservation of autologous cranial bone flaps for cranioplasty: a large sample retrospective study. World Neurosurg. 2018;109:e853–e859. PMID: 29107719 https://doi.оrg/10.1016/j.wneu.2017.10.112

40. ISO 14937:2009(en) Sterilization of health care products – General requirements for characterization of a sterilizing agent and the development, validation and routine control of a sterilization process for medical devices. International Organization for Standardization, 2009. Available at: https://www.iso.org/obp/ui/#iso:std:iso:14937:ed-2:v1:en [Accessed June 11, 2025].

41. Hunziker R, Lumelsky N, Wang F. Editorial: Scaffolds for regenerative medicine: a special issue of the Annals of Biomedical Engineering. Ann Biomed Eng. 2015;43(3):487–488. PMID: 25773983 https://doi.оrg/10.1007/s10439-015-1296-5

42. Bugbee WD, Kolessar DJ, Davidson JS, Gibbon AJ, Lesko JP, Cosgrove KD. Single use instruments for implanting a contemporary total knee arthroplasty system are accurate, efficient, and safe. J Arthroplasty. 2021;36(1):135–139.e2. PMID: 32800434 https://doi.оrg/10.1016/j.arth.2020.07.025

43. Hunziker EB, Lippuner K, Keel MJ, Shintani N. An educational review of cartilage repair: precepts & practice – myths & misconceptions – progress & prospects. Osteoarthritis Cartilage. 2015;23(3):334–350. PMID: 25534362 https://doi.оrg/10.1016/j.joca.2014.12.011

44. Wongin S, Wangdee C, Nantavisai S, Banlunara W, Nakbunnum R, Waikakul S, et al. Evaluation of osteochondral-like tissues using human freeze-dried cancellous bone and chondrocyte sheets to treat osteochondral defects in rabbits. Biomater Sci. 2021;9(13):4701–4716. https://doi.оrg/10.1039/d1bm00239b

45. Jackson DW, Windler GE, Simon TM. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med. 1990;18(1):1–10. PMID: 2301680 https://doi.оrg/10.1177/03635465900180010

46. Brunner G. Applications of Supercritical Fluids. Annu Rev Chem Biomol Eng. 2010;(1):321–342. PMID: 22432584 https://doi.оrg/10.1146/annurev-chembioeng-073009-101311

47. Bui D, Lovric V, Oliver R, Bertollo N, Broe D, Walsh WR. Meniscal allograft sterilisation: Effect on biomechanical and histological properties. Cell Tissue Bank. 2015;16(3):467–475. PMID: 25589449 https://doi.оrg/10.1007/s10561-014-9492-3

48. Budaev AA, Borovkova NV, Fayn AM, Nikolaev AYu, Makarov MS, et al. Evaluation of the effectiveness of allogeneic tendon graft sterilization with supercritical carbon dioxide. Bulletin of the Medical Institute "REAVIZ" (Rehabilitation, Doctor and Health). 2023;13(4):145–153. (In Russ.). https://doi.оrg/10.20340/vmi-rvz.2023.4.TX.2

49. Santos-Rosales V, Magariños B, Starbird R, Suárez-González J, Fariña J, Alvarez-Lorenzo C, et al. Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration. Int J Pharm. 2021;605:120801. PMID: 34139307 https://doi.оrg/10.1016/j.ijpharm.2021.120801

50. White A, Burns D, Christensen TW. Effective terminal sterilization using supercritical carbon dioxide. J Biotechnol. 2006;123(4):504–515. PMID: 16497403 https://doi.оrg/10.1016/j.jbiotec.2005.12.033


Review

For citations:


Budaev A.A., Makarov M.S., Borovkova N.V., Ofitcerov A.A., Ponomarev I.N., Miguleva I.Yu. Problems and prospects of bone-cartilage grafts′ preservation. Transplantologiya. The Russian Journal of Transplantation. 2025;17(4):494-503. (In Russ.) https://doi.org/10.23873/2074-0506-2025-17-4-494-503

Views: 111


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)