Characteristics of a self-expanding anatomically shaped valve for prosthetic replacement of the right ventricular outflow tract
https://doi.org/10.23873/2074-0506-2025-17-4-407-418
Abstract
Background. Patients following radical corrections of conotruncal congenital heart defects often develop right ventricular outflow tract dysfunctions as the child grows. It is well known that repeat surgical interventions, in addition to technical challenges, are associated with high risks and mortality. With advancements in endovascular surgery, transcatheter prosthetic right ventricular outflow tract (RVOT) replacement has become a viable alternative to thoracotomy surgery for a specific patient group. However, the choice of the "ideal" valve for transcatheter interventions remains a subject of debate.
Objective. The aim of this study was to develop a valve for transcatheter implantation into the pulmonary artery position, considering anatomical variations of the RVOT, and to evaluate the hydrodynamic properties of the valve in vitro using bench testing.
Material and methods. Based on the data obtained from a retrospective analysis of patients after radical correction of conotruncal congenital heart defects, a team of researchers from the Bioprosthetics Laboratory at the Center for New Surgical Technologies of National Medical Research Center n.a. Academician E.N. Meshalkin developed a prototype of a self-expanding nitinol frame for transcatheter pulmonary artery replacement.
Conclusions. The prototype of the first domestically produced self-expanding pulmonary bioprosthesis for transcatheter implantation with an anatomically shaped nitinol frame demonstrated optimal hydrodynamic properties during the initial stages of preclinical testing. The anatomical design of the frame allows for valve implantation into the native right ventricular outflow tract without prior stenting.
Keywords
About the Authors
S. N. ManukyanRussian Federation
Serezha N. Manukyan - Specialist in Endovascular Radiology Diagnostic and Treatment Methods, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
I. A. Soynov
Russian Federation
Ilya A. Soynov - Cand. Sci. (Med.), Cardiovascular Surgeon, Department of Cardiac Surgery for Congenital Heart Defects, Senior Researcher, Center for New Surgical Technologies, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
S. V. Vladimirov
Russian Federation
Sergey V. Vladimirov - Junior Researcher, Bioprosthetics Laboratory, Institute of Experimental Biology and Medicine, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
D. A. Khelimsky
Russian Federation
Dmitriy A. Khelimskiy - Cand. Sci. (Med.), Specialist in Endovascular Diagnostic and Treatment Radiology, Department of Interventional Diagnostic and Treatment Radiology, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
K. A. Rzaeva
Russian Federation
Kseniya A. Rzayeva - Specialist in Endovascular Diagnostic and Treatment Radiology, Department of Interventional Diagnostic and Treatment Radiology, Almazov National Medical Research Center.
2 Akkuratov St., St. Petersburg 197341
A. V. Voytov
Russian Federation
Aleksey V. Voytov - Cand. Sci. (Med.), Cardiovascular Surgeon, Department of Congenital Heart Defects, Senior Researcher, Center for New Surgical Technologies, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
A. V. Gorbatykh
Russian Federation
Artem V. Gorbatykh - Specialist in Endovascular Diagnostic and Treatment Radiology, Department of Interventional Radiology Diagnostic and Treatment Methods, Almazov National Medical Research Center.
2 Akkuratov St., St. Petersburg 197341
N. R. Nichay
Russian Federation
Natalya R. Nichay - Cand. Sci. (Med.), Cardiovascular Surgeon, Department of Congenital Heart Defects; Junior Researcher, Center for New Surgical Technologies, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
Yu. Yu. Kulyabin
Russian Federation
Yuriy Yu. Kulyabin - Cand. Sci. (Med.), Cardiovascular Surgeon, Department of Cardiac Surgery for Congenital Heart Defects, Junior Researcher, Center for New Surgical Technologies, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
I. Yu. Zhuravleva
Russian Federation
Irina Yu. Zhuravleva - Dr. Sci. (Med.), Head of the Bioprosthetics Laboratory, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
A. V. Bogachev-Prokofiev
Russian Federation
Aleksandr V. Bogachev-Prokofyev - Dr. Sci. (Med.), Director of the Institute of Circulation Pathology, Cardiovascular Surgeon, National Medical Research Center n.a. Academician E.N. Meshalkin.
15 Rechkunovskaya St., Novosibirsk 630055
References
1. Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, et al.; ESC Scientific Document Group. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur Heart J. 2021;42(6):563– 645. PMID: 32860028 https://doi.org/10.1093/eurheartj/ehaa554
2. McElhinney DB, Hennesen JT. The Melody valve and Ensemble delivery system for transcatheter pulmonary valve replacement. Ann N Y Acad Sci. 2013;1291(1):77–85. PMID: 23834411 https://doi.org/10.1111/nyas.12194
3. Murphy JG, Gersh BJ, Mair DD, Fuster V, McGoon MD, Ilstrup DM, et al. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med. 1993;329(9):593–599. PMID: 7688102 https://doi.org/10.1056/NEJM199308263290901
4. Bonhoeffer P, Boudjemline Y, Saliba Z, Merckx J, Aggoun Y, Bonnet D, et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet. 2000;356(9239):1403–1405. PMID: 11052583 https://doi.org/10.1016/S0140-6736(00)02844-0
5. Soynov IA, Zhuravleva IYu, Kulyabin YuYu, Nichay NR, Afanasyev AV, Aleshkevich NP, et al. Valved conduits in pediatric cardiac surgery. Pirogov Russian Journal of Surgery. 2018;(1):75–81. (In Russ.). https://doi.org/10.17116/hirurgia2018175-81
6. Isayama H, Nakai Y, Toyokawa Y, Togawa O, Gon C. Measurement of radial and axial forces of biliary self-expandable metallic stents. Gastrointest Endosc. 2009;70(1):37–44. PMID: 19249766 https://doi.org/10.1016/j.gie.2008.09.032
7. Hirdes MMC, Vleggaar FP de Beule M, Siersema PD. In vitro evaluation of the radial and axial force of self-expanding esophageal stents. Endoscopy. 2013;45(12):997–1005. PMID: 24288220 https://doi.org/10.1055/s-0033-1344985
8. Balzer D. Pulmonary valve replacement for tetralogy of fallot. Methodist Debakey Cardiovasc J. 2019;15(2):122–132. PMID: 31384375 https://doi.org/10.14797/mdcj-15-2-122
9. Patel ND, Levi DS, Cheatham JP, Qureshi SA, Shahanavaz S, Zahn EM. Transcatheter pulmonary valve replacement: a review of current valve technologies. J Soc Cardiovasc Angiogr Interv. 2022;1(6):100452. PMID: 39132347 https://doi.org/10.1016/j.jscai.2022.100452 eCollection 2022 Nov-Dec.
10. Kim AY, Jung JW, Jung SY, Shin JI, Eun LY, Kim NK, et al. Early outcomes of percutaneous pulmonary valve implantation with pulsta and melody valves: the first report from Korea. J Clin Med. 2020;9(9):2769. PMID: 32859019 https://doi.org/10.3390/jcm9092769
11. Soynov IA, Rzaeva KA, Gorbatykh AV, Voitov AV, Arkhipov AN, Nichay NR, et al. Physical and mechanical properties of conduits during the formation of the outflow tract into the pulmonary artery. Complex Issues of Cardiovascular Diseases. 2024;13(1):67–76. (In Russ.). https://doi.org/10.17802/2306-1278-2024-13-1-67-76
12. Soynov IA, Rzaeva KA, Manukian SN, Vladimirov SV, Dokuchaeva AA, Gorbatykh AV, et al. Implantation of a self-expandable prototype transcatheter pulmonary valve in a pig model: an experimental study. Patologiya Krovoobrashcheniya I Kardiokhirurgiya. 2024;28(3):94–102. (In Russ.). https://doi.org/10.21688/1681-3472-2024-3-94-102
13. Baessato F, Ewert P, Meierhofer C. CMR and percutaneous treatment of pulmonary regurgitation: outreach the search for the best candidate. Life (Basel). 2023;13(5):1127. PMID: 37240773 https://doi.org/10.3390/life13051127
14. Horlick EM, Haas NA. Percutaneous pulmonary valve replacement: what a difference a day makes. J Am Coll Cardiol. 2020;76(24):2859–2861. PMID: 33303075 https://doi.org/10.1016/j.jacc.2020.11.003
15. Nichay NR, Dokuchaeva AA, Kulyabin YY Boyarkin E.V, Kuznetsova EV, Rusakova YL, et al. Epoxy-versus glutaraldehyde-treated bovine jugular vein conduit for pulmonary valve replacement: a comparison of morphological changes in a pig model. Biomedicines. 2023;11(11):3101. PMID: 38002101 https://doi.org/10.3390/biomedicines11113101
Review
For citations:
Manukyan S.N., Soynov I.A., Vladimirov S.V., Khelimsky D.A., Rzaeva K.A., Voytov A.V., Gorbatykh A.V., Nichay N.R., Kulyabin Yu.Yu., Zhuravleva I.Yu., Bogachev-Prokofiev A.V. Characteristics of a self-expanding anatomically shaped valve for prosthetic replacement of the right ventricular outflow tract. Transplantologiya. The Russian Journal of Transplantation. 2025;17(4):407-418. (In Russ.) https://doi.org/10.23873/2074-0506-2025-17-4-407-418






































