Studying some lymphocyte subpopulations in search for predictors of renal graft dysfunction
https://doi.org/10.23873/2074-0506-2020-12-3-189-198
Abstract
Introduction. One of the main problems in transplantology is the detection of simple, reliable and non-invasive markers that could predict adverse immune reactions and adjust immune suppressive therapy in allograft recipients in a timely manner.
Objective. To determine the immunological criteria for the prediction of a graft dysfunction.
Material and methods. We have examined 197 recipients who underwent kidney transplantation. All of them were immunologically examined with the identification of more than 40 subpopulations of leukocytes. Allograft function was assessed on day 7 with the division of patients into two groups: with either primary or graft dysfunction. Simple and multiple logistic regressions were used to predict a graft dysfunction. Preliminary statistical analysis was performed using nonparametric statistics.
Results and discussion. A scoring system to predict the graft function has been worked out. At CD19+IgD+CD27-<72.7%, score 1 is assigned, and 0 score is given at > 72.7%. At CD3+CD8+CD69+>9.7% score 1 is assigned, and 0 score is given at CD3+CD8+CD69+<9.7%. Total score is calculated by summing up the scores. The total score = 0 predicts a primary graft function; total score >1 predicts a graft dysfunction. This scoring system has the sensitivity of 91.9%, еру specificity of 100%, еру accuracy of 94.9%, positive predictive value of 1 and negative predictive value of 0.877.
Conclusions. 1. Percentage of CD19+IgD+CD27- and CD3+CD8+CD69+ subpopulations can be used to predict a graft dysfunction. 2. At values of CD19+IgD+CD27- not exceeding 72.7% and CD3+CD8+CD69+ more than 9.7%, the development of a graft dysfunction can be anticipated.
About the Authors
S. V. ZyblevaBelarus
Svetlana V. Zybleva, Cand. Med. Sci., Immunologist, Academic Secretary
290 Il’ich St., Gomel 246040
S. L. Zyblev
Belarus
Sergey L. Zyblev, Cand. Med. Sci., Associate Professor, Surgeon of Transplantation, Endocrine and Reconstructive Surgery Department
290 Il’ich St., Gomel 246040
V. N. Martinkov
Belarus
Viktor N. Martinkov, Cand. Biol. Sci., Associate Professor, Senior Researcher, Laboratory of Molecular Genetics
290 Il’ich St., Gomel 246040
References
1. Калачик О.В. Донорзависимые факторы риска развития ранней дисфункции аллографта при трупной трансплантации почки. Медицинские новости. 2018;(4):37–41. Kalachik OV. Donor related early allograft dysfunction risk factors in cadaveric kidney transplantation. Meditsinskie novosti. 2018;(4):37–41. (In Russ.).
2. Redfield RR, Scalea JR, Zens TJ, Muth B, Kaufman DB, Djamali A, et al. Predictors and outcomes of delayed graft function after living-donor kidney transplantation. Transpl Int. 2016;29(1):81– 87. PMID: 26432507 https://doi.org/10.1111/tri.12696
3. Nashan B, Abbud-Filho M, Citterio F. Prediction, prevention, and management of delayed graft function: where are we now? Clin Transplant. 2016;30(10):1198– 1208. PMID: 27543840 https://doi.org/10.1111/ctr.12832
4. Siedlecki A, Irish W, Brennan DC. Delayed graft function in the kidney transplant. Am J Transplant. 2011;11(11):2279–2296. PMID: 21929642 https://doi.org/10.1111/j.1600-6143.2011.03754.x
5. Jeldres C, Cardinal H, Duclos A, Shariat SF, Suardi N, Capitanio U, et al. Prediction of delayed graft function after renal transplantation. Can Urol Assoc J. 2009;3(5):377–382. PMID: 19829730 https://doi.org/10.5489/cuaj.1147
6. Irish WD, Ilsley JN, Schnitzler MA, Feng S, Brennan DC. A risk prediction model for delayed graft function in the current era of deceased donor renal transplantation. Am J Transplant. 2010;10(10):2279–2286. PMID: 20883559 https://doi.org/10.1111/j.1600-6143.2010.03179.x
7. Bae S, Garonzik Wang JM, Massie AB, Jackson KR, McAdams-DeMarco MA, Brennan DC, et al. Early steroid withdrawal in deceased-donor kidney transplant recipients with delayed graft function. J Am Soc Nephrol. 2020;31(1):175–185. PMID: 31852720 https://doi.org/10.1681/ASN.2019040416
8. Dias AC Filho, Alves JR, da Cruz PRC, Santana VBBM, Riccetto CLZ. Predicting urine output after kidney transplantation: development and internal validation of a nomogram for clinical use. Int Braz J Urol. 2019;45(3):588–604. PMID: 30912888 https://doi.org/10.1590/S1677-5538.IBJU.2018.0701
9. Cantaluppi V, Dellepiane S, Tamagnone M, Medica D, Figliolini F, Messina M, et al. Neutrophil gelatinase associated lipocalin is an early and accurate biomarker of graft function and tissue regeneration in kidney transplantation from extended criteria donors. PLoS One. 2015;10(6):e0129279. PMID: 26125566 https://doi.org/10.1371/journal.pone.0129279
10. Peng B, Ming Y, Yang C. Regulatory B cells: the cutting edge of immune tolerance in kidney transplantation. Cell Death Dis. 2018;9(2):109. PMID: 29371592 https://doi.org/10.1038/s41419-017-0152-y
11. Newell KA, Asare A, Kirk AD, Gisler TD, Bourcier K, Suthanthiran M, et al. Identification of a B cell signature associated with renal transplant tolerance in humans. J Clin Invest. 2010;120(6):1836–1847. PMID: 20501946 https://doi.org/10.1172/JCI39933
12. Sagoo P, Perucha E, Sawitzki B, Tomiuk S, Stephens DA, Miqueu P, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J Clin Invest. 2010;120(6):1848–1861. PMID: 20501943 https://doi.org/10.1172/JCI39922
13. Posselt AM, Vincenti F, Bedolli M, Lantz M, Roberts JP, Hirose R. CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation. 2003;76(1):190–195. PMID: 12865808 https://doi.org/10.1097/01.TP.0000073614.29680.A8
Review
For citations:
Zybleva S.V., Zyblev S.L., Martinkov V.N. Studying some lymphocyte subpopulations in search for predictors of renal graft dysfunction. Transplantologiya. The Russian Journal of Transplantation. 2020;12(3):189-198. https://doi.org/10.23873/2074-0506-2020-12-3-189-198