Preview

Трансплантология

Расширенный поиск

Главный комплекс гистосовместимости: история открытия, эволюция, строение, значение при трансплантации аллогенных гемопоэтических стволовых клеток

https://doi.org/10.23873/2074-0506-2023-15-2-251-265

Аннотация

Цель. Раскрыть значение главного комплекса гистосовместимости и эволюционной дивергенции человеческих лейкоцитарных антигенов в трансплантации аллогенных гемопоэтических стволовых клеток.
Статья посвящена эволюции главного комплекса гистосовместимости и рассмотрению причин его формирования на примере системы распознавания беспозвоночных животных, растений, челюстных позвоночных животных и человека. Раскрыты понятия иммунопептидома и эволюционной дивергенции человеческих лейкоцитарных антигенов и приведены данные об их влиянии на исходы терапии у пациентов с гемобластозами. Раскрыто влияние несовместимости по главному комплексу гистосовместимости на исходы трансплантации.

Об авторах

Ф. А. Омарова
ФГБУ «НМИЦ гематологии» МЗ РФ
Россия

Феруза Абдулгаджи-кизи Омарова, аспирант, врач-гематолог отделения химиотерапии гемобластозов и трансплантации костного мозга и гемопоэтических стволовых клеток 
40% – написание текста рукописи, обзор публикаций по теме статьи

125167, Москва, Новый Зыковский пр-д, д. 4



М. Ю. Дроков
ФГБУ «НМИЦ гематологии» МЗ РФ
Россия

Михаил Юрьевич Дроков, канд. мед. наук, врач-гематолог, руководитель сектора научных исследований химиотерапии гемобластозов, депрессий кроветворения и трансплантации костного мозга 
30% – разработка концепции и дизайна обзора, редактирование рукописи 

125167, Москва, Новый Зыковский пр-д, д. 4



Е. Г. Хамаганова
ФГБУ «НМИЦ гематологии» МЗ РФ
Россия

Екатерина Георгиевна Хамаганова, д-р биол. наук, иммуногенетик, заведующая лабораторией тканевого типирования 
30% – разработка концепции и дизайна обзора, редактирование рукописи 

125167, Москва, Новый Зыковский пр-д, д. 4



Список литературы

1. Gorer PA. The genetic and antigenic basis of tumour transplantation. J Pathol Bacteriol. 1937;44(3):691–697. https://doi.org/10.1002/path.1700440313

2. Snell GD. Some recollections of Peter Gorer and his work on this fiftieth anniversary of his discovery of H-2. Immunogenetics. 1986;24(6):339–340. PMID: 3539776 https://doi.org/10.1007/BF00377948

3. Medawar PB. The behaviour and fate of skin autografts and skin homografts in rabbits: a report to the war wounds committee of the medical research council. J Anat. 1944;78(Pt 5):176–199. PMID: 17104960

4. Dausset PJ. Iso-leuco-antibodies. Acta Haematol. 1958;20(1–4):156–166. (In French). PMID: 13582558 https://doi.org/10.1159/000205478

5. Bodmer WF. Evolutionary significance of the HL-A system. Nature. 1972;237(5351):139–145. PMID: 4113158 https://doi.org/10.1038/237139a0

6. Payne R, Tripp M, Weigle J, Bodmer W, Bodmer J. A new leukocyte isoantigen system in man. Cold Spring Harb Symp Quant Biol. 1964;29:285–295. PMID: 14278475 https://doi.org/10.1101/sqb.1964.029.01.031

7. Levine BB, Ojeda A, Benacerraf B. Studies on artificial antigens. III. The genetic control of tile immune response to hapten-poly-l-lysine conjugates in guinea pigs. J Exp Med. 1963;118(6):953-957. PMID: 14112274 https://doi.org/10.1084/jem.118.6.953

8. McDevitt HO, Sela M. Genetic control of the antibody response. II. Further analysis of the specificity of determinant-specific control, and genetic analysis of the response to (H,G)-A--L in CBA and C57 mice. J Exp Med. 1967;126(5):969–978. PMID: 6062007 https://doi.org/10.1084/jem.126.5.969

9. Morris PJ, Kincaid-Smith P, Ting A, Stocker JW, Marshall VC. Prospective leukocyte typing in cadaver renal transplantation. Lancet. 1968;2(7572):803–805. PMID: 4175605 https://doi.org/10.1016/s0140-6736(68)92458-6

10. Thomas ED, Lochte HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–496. PMID: 13464965 https://doi.org/10.1056/NEJM195709122571102

11. Thomas E, Buckner C, Banaji M, Clift R, Fefer A, Flournoy N, et al. One hundred patients with acute leukemia treated by chemotherapy, total body irradiation, and allogeneic marrow transplantation. Blood. 1977;49(4):511–533. PMID: 14751 https://doi.org/10.1182/blood.V49.4.511.511

12. Thomas ED, Buckner CD, Clift RA, Fefer A, Johnson FL, Neiman PE, et al. Marrow transplantation for acute nonlymphoblastic leukemia in first remission. N Engl J Med. 1979;301(11):597–599. PMID: 381925 https://doi.org/10.1056/NEJM197909133011109

13. Hansen JA, Clift RA, Thomas ED, Buckner CD, Storb R, Giblett ER. Transplantation of marrow from an unrelated donor to a patient with acute leukemia. N Engl J Med. 1980;303(10):565–567. PMID: 6995837 https://doi.org/10.1056/NEJM198009043031007

14. Hildemann WH, Johnson IS, Jokiel PL. Immunocompetence in the lowest metazoan phylum: transplantation immunity in sponges. Science. 1979;204(4391):420–422. PMID: 441730 https://doi.org/10.1126/science.441730

15. Scofield VL, Schlumpberger JM, West LA, Weissman IL. Protochordate allorecognition is controlled by a MHC-like gene system. Nature. 1982;295(5849):499–502. PMID: 7057909 https://doi.org/10.1038/295499a0

16. Weissman IL, Saito Y, Rinkevich B. Allorecognition histocompatibility in a protochordate species: is the relationship to MHC somatic or structural? Immunol Rev. 1990;113(1):227–241. PMID: 2180808 https://doi.org/10.1111/j.1600-065x.1990.tb00043.x

17. De Tomaso AW, Saito Y, Ishizuka KJ, Palmeri KJ, Weissman IL. Mapping the genome of a model protochordate. I. A low resolution genetic map encompassing the fusion/histocompatibility (Fu/HC) locus of Botryllus schlosseri. Genetics. 1998;149(1):277–287. PMID: 9584102 https://doi.org/10.1093/genetics/149.1.277

18. Grosberg RK, Quinn JF. The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature. 1986;322(6078):456–459. https://doi.org/10.1038/322456a0

19. Haring V, Gray JE, McClure BA, Anderson MA, Clarke AE. Self-Incompatibility: a self-recognition system in plants. Science. 1990;250(4983):937–941. PMID: 2237440 https://doi.org/10.1126/science.2237440

20. Kao TH, Mccubbin AG. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci. 1996;93(22):12059–12065. PMID: 8901531 https://doi.org/10.1073/pnas.93.22.12059

21. Ebert PR, Anderson MA, Bernatzky R, Altschuler M, Clarke AE. Genetic polymorphism of self-incompatibility in flowering plants. Cell. 1989;56(2):255–262. PMID: 2643480 https://doi.org/10.1016/0092-8674(89)90899-4

22. Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogai A, Hinata K. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature. 2000;403(6772):913–916. PMID: 10706292 https://doi.org/10.1038/35002628

23. McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, et al. Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature. 1989;342(6252):955–957. PMID: 2594090 https://doi.org/10.1038/342955a0

24. Riera Romo M, Pérez-Martínez D, Castillo Ferrer C. Innate immunity in vertebrates: an overview. Immunology. 2016;148(2):125–139. PMID: 26878338 https://doi.org/10.1111/imm.12597

25. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010;11(1):47–59. PMID: 19997068 https://doi.org/10.1038/nrg2703

26. Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet. 2010;11(1):47–59. PMID: 19997068 https://doi.org/10.1038/nrg2703

27. Rock KL, Reits E, Neefjes J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 2016;37(11):724–737. PMID: 27614798 https://doi.org/10.1016/j.it.2016.08.010

28. Kuroda N, Figueroa F, O’hUigin C, Klein J. Evidence that the separation of MHC class II from class I loci in the zebrafish, Danio rerio, occurred by translocation. Immunogenetics. 2002;54(6):418–430. PMID: 12242592 https://doi.org/10.1007/s00251-002-0473-5

29. Solbakken MH, Tørresen OK, Nederbragt AJ, Seppola M, Gregers TF, Jakobsen KS, et al. Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Sci Rep. 2016;6:25211. PMID: 27126702 https://doi.org/10.1038/srep25211

30. Flajnik MF, Ohta Y, NamikawaYamada C, Nonaka M. Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev. 1999;167(1):59–67. PMID: 10319251 https://doi.org/10.1111/j.1600-065x.1999.tb01382.x

31. Kulski JK, Shiina T, Anzai T, Kohara S, Inoko H. Comparative genomic analysis of the MHC: the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev. 2002;190(1):95–122. PMID: 12493009 https://doi.org/10.1034/j.1600-065x.2002.19008.x

32. Agrawal A, Eastmant QM, Schatz DG. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature. 1998;394(6695):744–751. PMID: 9723614 https://doi.org/10.1038/29457

33. Matsunaga T, Rahman A. What brought the adaptive immune system to vertebrates? - The jaw hypothesis and the seahorse. Immunol Rev. 1998;166:177–186. PMID: 9914912 https://doi.org/10.1111/j.1600-065x.1998.tb01262.x

34. Ohta Y, Okamura K, McKinney EC, Bartl S, Hashimoto K, Flajnik MF. Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci USA. 2000;97(9):4712–4717. PMID: 10781076 https://doi.org/10.1073/pnas.97.9.4712

35. Sato A, Figueroa F, Murray BW, Málaga-Trillo E, Zaleska-Rutczynska Z, Sültmann H, et al. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics. 2000;51(2):108–116. PMID: 10663573 https://doi.org/10.1007/s002510050019

36. Matsuo MY, Asakawa S, Shimizu N, Kimura H, Nonaka M. Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes). Immunogenetics. 2002;53(10):930–940. PMID: 11862394 https://doi.org/10.1007/s00251-001-0427-3

37. Hey J. The neutralist, the fly and the selectionist. Trends Ecol Evol. 1999;14(1):35–38. PMID: 10234248 https://doi.org/10.1016/s0169-5347(98)01497-9

38. Ford MJ. Applications of selective neutrality tests to molecular ecology. Mol Ecol. 2002;11(8):1245–1262. PMID: 12144648 https://doi.org/10.1046/j.1365-294x.2002.01536.x

39. Klein J, Figueroa F. Evolution of the major histocompatibility complex. Crit Rev Immunol. 1986;6(4):295–386.63. PMID: 3536303

40. IPD-IMGT/HLA Database. Available at: https://www.ebi.ac.uk/ipd/imgt/hla/ [Accessed March 30, 2023].

41. Garrigan D, Hedrick PW. Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution. 2003;57(8):1707–1722. PMID: 14503614 https://doi.org/10.1111/j.0014-3820.2003.tb00580.x

42. Edwards SV, Hedrick PW. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol. 1998;13(8):305–311. PMID: 21238318 https://doi.org/10.1016/s0169-5347(98)01416-5

43. Choo SY. The HLA System: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23. PMID: 17326240 https://doi.org/10.3349/ymj.2007.48.1.11

44. Kulski JK, Inoko H. Major histocompatibility complex (MHC) genes. eLS; 2006. https://doi.org/10.1038/npg.els.0005900 Available at: https://onlinelibrary.wiley.com/doi/10.1038/npg.els.0005900 [Accessed March 30, 2023].

45. Bahram S. MIC genes: from genetics to biology. Adv Immunol. 2000;76:1–60. PMID: 11079097 https://doi.org/10.1016/s0065-2776(01)76018-x

46. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens. 2004;64(6):631–649. PMID: 15546336 https://doi.org/10.1111/j.1399-0039.2004.00327.x

47. Burgdorf S, Kautz A, Böhnert V, Knolle PA, Kurts C. Distinct pathways of antigen uptake and intracellular routing in CD4 and CD8 T cell activation. Science. 2007;316(5824):612–616. PMID: 17463291 https://doi.org/10.1126/science.1137971

48. Burgdorf S, Kurts C. Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol. 2008;20(1):89–95. PMID: 18249105 https://doi.org/10.1016/j.coi.2007.12.002

49. Караваева О.С., Дроков М.Ю., Хамаганова Е.Г. Т-регуляторные клетки и трансплантация аллогенных гемопоэтических стволовых клеток. Трансплантология. 2022;14(4):462–475. https://doi.org/10.23873/2074-0506-2022-14-4-462-475

50. Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol. 2017;18(2):121–133. PMID: 29082915 https://doi.org/10.1038/nri.2017.118

51. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010;28:445–489. PMID: 20192806 https://doi.org/10.1146/annurev-immunol-030409-101212

52. ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol. 2013;5(12):а016873. PMID: 24296169 https://doi.org/10.1101/cshperspect.a016873

53. Creagh EM, O’Neill LAJ. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006;27(8):352–357. PMID: 16807108 https://doi.org/10.1016/j.it.2006.06.003

54. Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol. 20091;21(4):242–253. PMID: 19748439 https://doi.org/10.1016/j.smim.2009.06.005

55. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2):S33–40. PMID: 20061006 https://doi.org/10.1016/j.jaci.2009.09.017

56. Kawase T, Tanaka H, Kojima H, Uchida N, Ohashi K, Fukuda T, et al. Impact of high-frequency HLA haplotypes on clinical cytomegalovirus reactivation in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(12):2482–2489. PMID: 31400501 https://doi.org/10.1016/j.bbmt.2019.07.042

57. Futohi F, Saber A, Nemati E, Einollahi B, Rostami Z. Human leukocyte antigen alleles and cytomegalovirus infection after renal transplantation. Nephrourol Mon. 2015;7(6):31635. PMID: 26866009 https://doi.org/10.5812/numonthly.31635

58. Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2:1–18. PMID: 16242022 https://doi.org/10.1186/1742-9994-2-16

59. Ober C. Studies of HLA, fertility and mate choice in a human isolate. Hum Reprod Update. 1999;5(2):103–107. PMID: 10336015 https://doi.org/10.1093/humupd/5.2.103

60. Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, et al. Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med. 2019;25(11):1715–1720. PMID: 31700181 https://doi.org/10.1038/s41591-019-0639-4

61. Roerden M, Walz JS, Nelde A, Heitmann JS, Klein R, Rammensee HG, et al. HLA evolutionary divergence as a prognostic marker for AML patients undergoing allogeneic stem cell transplantation. Cancers (Basel). 2020;12(7):1835. PMID: 32650450 https://doi.org/10.3390/cancers12071835

62. Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185(4154):862–864. PMID: 4843792 https://doi.org/10.1126/science.185.4154.862

63. Fleischhauer K, Shaw BE. HLA-DP in unrelated hematopoietic cell transplantation revisited: challenges and opportunities. Blood. 2017;130(9):1089–1096. PMID: 28667011 https://doi.org/10.1182/blood2017-03-742346

64. Shaw BE, Mayor NP, Russell NH, Apperley JF, Clark RE, Cornish J, et al. Diverging effects of HLA–DPB1 matching status on outcome following unrelated donor transplantation depending on disease stage and the degree of matching for other HLA alleles. Leukemia. 2010;24(1):58–65. PMID:19924143 https://doi.org/10.1038/leu.2009.239

65. Zino E, Frumento G, Marktel S, Sormani MP, Ficara F, Di Terlizzi S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004;103(4):1417–1424. PMID: 14576061 https://doi.org/10.1182/blood-2003-04-1279

66. Fleischhauer K, Shaw BE, Gooley T, Malkki M, Bardy P, Bignon JD, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation: a retrospective study. Lancet Oncol. 2012;13(4):366–374. PMID: 22340965 https://doi.org/10.1016/S1470-2045(12)70004-9

67. Хамаганова Е.Г., Паровичникова Е.Н., Кузьмина Л.А., Куликов С.М., Кузьминова Е.П., Чапова Р.С. и др. Влияние несовместимости по гену HLA DPB1 на результаты трансплантации аллогенных гемопоэтических стволовых клеток от HLA-A-B-C–DRB1-DQB1-совместимого неродственного донора. Онкогематология. 2018;13(1):54–62. https://doi.org/10.17650/1818-8346-2018-13-1-54-62

68. Wang Y, Liu DH, Xu LP, Liu KY, Chen H, Chen YH, et al. Superior graftversus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic comparison. Biol Blood Marrow Transplant. 2011;17(6):821–830. PMID: 20831895 https://doi.org/10.1016/j.bbmt.2010.08.023

69. Gu Z, Wang L, Yuan L, Huang W, Li M, Guan L, et al. Similar outcomes after haploidentical transplantation with post-transplant cyclophosphamide versus HLA-matched transplantation: a metaanalysis of case-control studies. Oncotarget. 2017;8(38):63574-63586. PMID: 28969012 https://doi.org/10.18632/oncotarget.18862

70. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2017;52(6):811–817. PMID: 28287639 https://doi.org/10.1038/bmt.2017.34

71. Дубняк Д.С., Рисинская Н.В., Дроков М.Ю., Кострица Н.С., Давыдова Ю.О., Кузьмина Л.А. Влияние посттрансплантационного циклофосфамида на химеризм в популяции Т-регуляторных клеток у пациентов после трансплантации аллогенных гемопоэтических стволовых клеток Клеточная терапия и трансплантация. 2017;20(3):37–40.

72. Попова Н.Н., Савченко В.Г. Реконституция Т-клеточного звена иммунной системы у больных после трансплантации аллогенных гемопоэтических стволовых клеток. Гематология и трансфузиология. 2020;65(1):24–38. https://doi.org/10.35754/0234-5730-2020-65-1-24-38

73. Дроков М.Ю., Паровичникова Е.Н., Кузьмина Л.А., Гальцева И.В., Васильева В.А., Михальцова Е.Д. и др. Роль гранзима В в популяции Т-регуляторных клеток у больных после трансплантации аллогенного костного мозга. Гематология и трансфузиология. 2016;61(1):32–37. https://doi.org/10.18821/0234-5730-2016-61-1-32-37

74. Van Rood JJ, Loberiza FR, Zhang MJ, Oudshoorn M, Claas F, Cairo MS, et al. Effect of tolerance to noninherited maternal antigens on the occurrence of graft-versus-host disease after bone marrow transplantation from a parent or an HLA-haploidentical sibling. Blood. 2002;99(5):1572–1577. PMID: 11861270 https://doi.org/10.1182/blood.v99.5.1572

75. Stern M, Ruggeri L, Mancusi A, Bernardo ME, De Angelis C, Bucher C, et al. Survival after T cell-depleted haploidentical stem cell transplantation is improved using the mother as donor. Blood. 2008;112(7):2990–2995. PMID: 18492955 https://doi.org/10.1182/blood2008-01-135285


Рецензия

Для цитирования:


Омарова Ф.А., Дроков М.Ю., Хамаганова Е.Г. Главный комплекс гистосовместимости: история открытия, эволюция, строение, значение при трансплантации аллогенных гемопоэтических стволовых клеток. Трансплантология. 2023;15(2):251-265. https://doi.org/10.23873/2074-0506-2023-15-2-251-265

For citation:


Omarova F.A., Drokov M.Yu., Khamaganova E.G. Major histocompatibility complex: history of discovery, evolution, structure, significance in transplantation of allogeneic hematopoietic stem cells. Transplantologiya. The Russian Journal of Transplantation. 2023;15(2):251-265. https://doi.org/10.23873/2074-0506-2023-15-2-251-265

Просмотров: 669


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)