Effect of DNA target size on the efficiency of chimerism measurement in circulating free plasma DNA
https://doi.org/10.23873/2074-0506-2024-16-4-458-472
Abstract
Introduction. The analysis of free circulating DNA (cfDNA) holds promise for molecular diagnostics, but its fragmentation and low concentration can complicate PCR analysis.
Objective. To investigate the effect of target length on the amplification efficiency of Y-chromosome markers from cfDNA.
Material and methods. Fifty cfDNA samples were obtained from 39 patients: patients after liver transplantation (n=19), patients with acute leukemia after allogeneic hematopoietic stem cell transplantation (n=10), and pregnant women (n=10). In addition, we prepared 16 chimeric samples by sequential dilution of male cfDNA into female cfDNA from healthy donors. We determined the proportion of male cfDNA using the Y-chromosome marker S02, which is 211 bp in length as suggested by M. Alizadeh et al. We also modified Alizadeh's primer design to obtain a DNA target with a length of 138 bp. The proportion of male cfDNA was also determined by fragment analysis using the amelogenin Y marker (84 bp) from the COrDIS Plus kit (Gordiz LLC, Russia).
Results. In the three groups of patients, amplification of male cfDNA was more efficient when shorter DNA targets were used (p<0.05). In artificially created ‘chimeras’ with a known ratio of male to female cfDNA, analysis of a marker of 84 bp in length gave values closest to the real ones.
Conclusions. In the quantitative models tested so far, shorter PCR targets are preferred for the analysis of cfDNA.
Keywords
About the Authors
E. E. NikulinaRussian Federation
Elena E. Nikulina - Researcher, Laboratory of Molecular Hematology.
4 Noviy Zykovskiy Dr., Moscow 125167
N. V. Risinskaya
Russian Federation
Natalia V. Risinskaya - Cand. Sci. (Biol.), Senior Researcher, Laboratory of Molecular Hematology.
4 Noviy Zykovskiy Dr., Moscow 125167
O. E. Dubova
Russian Federation
Olga E. Dubova - Researcher Assistant, Laboratory of Molecular Hematology, NMRCH; Research Assistant, Institute of Digital Biodesign and Simulation of Living Systems, I.M. Sechenov FMSMU (Sechenov University).
4 Noviy Zykovskiy Dr., Moscow 125167; 8 Bldg. 2 Trubetskaya St., Moscow 119991
O. V. Sumtsova
Russian Federation
Olga V. Sumtsova - Hepatologist, Researcher, Department of Transplantology.
61/2 Shchepkin St., Moscow 129110
Ya. G. Moysyuk
Russian Federation
Yan G. Moysyuk - Prof., Dr. Sci. (Med.), Head of the Department of Transplantology.
61/2 Shchepkin St., Moscow 129110
V. A. Vasilieva
Russian Federation
Vera A. Vasilieva - Cand. Sci. (Med.), Head of the Department "Daytime Hospital for Immunochemotherapy after Transplantation of Bone Marrow and Hematopoietic Stem Cells".
4 Noviy Zykovskiy Dr., Moscow 125167
M. V. Soloveva
Russian Federation
Maya V. Soloveva - Cand. Sci. (Med.), Hematologist, Department of Intensive High-Dose Chemotherapy for Paraproteinemic Hemoblastoses.
4 Noviy Zykovskiy Dr., Moscow 125167
A. A. Yushkova
Russian Federation
Anna A. Yushkova - Leading Specialist, Laboratory of Molecular Hematology.
4 Noviy Zykovskiy Dr., Moscow 125167
I. S. Fevraleva
Russian Federation
Irina S. Fevraleva - Senior Researcher, Laboratory of Molecular Hematology.
4 Noviy Zykovskiy Dr., Moscow 125167
A. S. Skripkina
Russian Federation
Anastasiya S. Skripkina - Trainee in Laboratory of Molecular Hematology, NMRCH; Research Assistant, Institute of Digital Biodesign and Simulation of Living Systems, I.M. Sechenov FMSMU (Sechenov University).
4 Noviy Zykovskiy Dr., Moscow 125167; 8 Bldg. 2 Trubetskaya St., Moscow 119991
A. A. Makarik
Russian Federation
Alina A. Makarik - Residency-training Physician, Department of Pregnancy Pathology.
22A Pokrovka St., Moscow 101000
A. B. Sudarikov
Russian Federation
Andrey B. Sudarikov - Dr. Sci. (Biol.), Head of the Department of Molecular Genetics, Head of the Laboratory of Molecular Hematology.
4 Noviy Zykovskiy Dr., Moscow 125167
References
1. Levitsky J, Kandpal M, Guo K, Kleiboeker S, Sinha R, Abecassis M, et al. Donor-derived cell-free DNA levels predict graft injury in liver trans plant recipi ents. Am J Transplant. 2022;22(2):532–540. PMID: 34510731 https://doi.org/10.1111/ajt.16835
2. Avramidou E, Vasileiadou S, Antoniadis N. Liver transplantation and ddcfDNA: a small solution for a big problem. Livers. 2023;3(1):76–81. https://doi.org/10.3390/livers3010007
3. García-Fernández N, Macher HC, Suárez-Artacho G, Gómez-Bravo MÁ, Molinero P, Guerrero JM, et al. DonorSpecific Cell-Free DNA qPCR quantification as a noninvasive accurate biomarker for early rejection detection in liver transplantation. J Clin Med. 2022;12(1):36. PMID: 36614837 https://doi.org/10.3390/jcm12010036
4. Cheng AP, Cheng MP, Loy CJ, Lenz JS, Chen K, Smalling S, et al. Cell-free DNA profiling informs all major complications of hematopoietic cell transplantation. Proc Natl Acad Sci USA. 2022;119(4):e2113476118. PMID: 35058359 https://doi.org/10.1073/pnas.2113476118
5. Aljurf M, Abalkhail H, Alseraihy A, Mohamed SY, Ayas M, Alsharif F, et al. Chimerism analysis of cell-free DNA in patients treated with hematopoietic stem cell transplantation may predict early relapse in patients with hematologic malignancies. Biotechnol Res Int. 2016;2016:8589270. PMID: 27006832 https://doi.org/10.1155/2016/8589270
6. Pasca S, Guo MZ, Wang S, Stokvis K, Shedeck A, Pallavajjala A, et al. Cell-free DNA measurable residual disease as a predictor of postallogeneic hematopoietic cell transplant outcomes. Blood Adv. 2023;7(16):4660–4670. PMID: 37276081 https://doi.org/10.1182/bloodadvances.2023010416
7. Gardner McKinlay RJM, Sutherland GR, Shaffer LG, eds. Chromosome abnormalities and genetic counseling. Oxford University Press Inc.; 2011.
8. Lo YM, Corbetta N, Chamber lain PF, Rai V, Sargent IL, Red man CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487. PMID: 9274585 https://doi.org/10.1016/S01406736(97)02174-0
9. Kazakov VI, Bozhkov VM, Linde VA, Repina MA, Mikhaˇіlov VM. Extracellular DNA in the blood of pregnant women. Cytology. 1995;37(3):232–236. (In Russ.).
10. Jeon YJ, Zhou Y, Li Y, Guo Q, Chen J, Quan S, et al. The feasibility study of noninvasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform. PLoS One. 2014;9(10):e110240. PMID: 25329639 https://doi.org/10.1371/journal.pone.0110240
11. Thung DT, Beulen L, Hehir-Kwa J, Faas BH. Implementation of whole genome massively parallel sequencing for noninvasive prenatal testing in laboratories. Expert Rev Mol Diagn. 2015;15(1):111–124. PMID: 25347354 https://doi.org/10.1586/14737159.2015.973857
12. Grunt M, Hillebrand T, Schwarzenbach H. Clinical relevance of size selection of circulating DNA. Transl Cancer Res. 2018;7(Suppl 2):S171–84. https://doi.org/10.21037/tcr.2017.10.10
13. Schwarzenbach H, Pantel K. Circulating DNA as biomarker in breast cancer. Breast Cancer Res. 2015;17(1):e136. PMID: 26453190 https://doi.org/10.1186/s13058-015-0645-5
14. Page K, Hava N, Ward B, Brown J, Guttery DS, Ruangpratheep C, et al. Detection of HER2 amplification in circulating free DNA in patients with breast cancer. Br J Cancer. 2011;104(8):1342– 1348. PMID: 21427727 https://doi.org/10.1038/bjc.2011.89
15. Page K, Powles T, Slade MJ, Tamburo De Bella M, Walker RA, Coombes RC, et al. The importance of careful blood processing in isolation of cell-free DNA. Ann N Y Acad Sci. 2006;1075:313–317. PMID: 17108226 https://doi.org/10.1196/annals.1368.0
16. Trigg RM, Martinson LJ, Parpart-Li S, Shaw JA. Factors that influence quality and yield of circulating-free DNA: a systematic review of the methodology literature. Heliyon. 2018;4(7):e00699. PMID: 30094369 https://doi.org/10.1016/j.heliyon.2018.e00699
17. Barton DE. DNA prep for eukaryotic cells (macrophages)? 1995. Available at: http://www.bio.net/bionet/mm/methods-and-reagents/1995-July/031231.html [Accessed August 6, 2024].
18. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quan titative polymerase chain reaction. Blood. 2002;99(12):4618–4625. PMID: 12036896 https://doi.org/10.1182/blood.V99.12.4618
19. Thierry AR, Messaoudi SEl, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347–376. PMID: 27392603 https://doi.org/10.1007/s10555-0169629-x
20. Fernández-Galán E, Badenas C, Fondevila C, Jiménez W, Navasa M, PuigButillé JA, et al. Monitoring of donorderived cell-free DNA by short tandem repeats: concentration of total cell-free DNA and fragment size for acute rejection risk assessment in liver transplantation. Liver Transpl. 2022;28(2):257– 268. PMID: 34407295 https://doi.org/10.1002/lt.26272
21. Zhao D, Zhou T, Luo Y, Wu C, Xu D, Zhong C, et al. Preliminary clinical experience applying donor-derived cell-free DNA to discern rejection in pediat ric liver transplant recipients. Sci Rep. 2021;11(1):1138. PMID: 33441886 https://doi.org/10.1038/s41598-020-80845-6
22. Andrikovics H, Őrfi Z, Meggyesi N, Bors A, Varga L, Kövy P, et al. Current trends in applications of circulatory microchimerism detection in transplantation. Int J Mol Sci. 2019;20(18):4450. PMID: 31509957 https://doi.org/10.3390/ijms20184450
23. Duque-Afonso J, Waterhouse M, Pfeifer D, Follo M, Duyster J, Bertz H, et al. Cell-free DNA characteristics and chimerism analysis in patients after allogeneic cell transplantation. Clin Biochem. 2018;52:137–141. PMID: 29180242 https://doi.org/10.1016/j.clin-biochem.2017.11.015
24. Waterhouse M, Pennisi S, Pfeifer D, Scherer F, Zeiser R, Duyster J, et al. Monitoring of measurable residual disease using circulating DNA after allogeneic hematopoietic cell transplantation. Cancers (Basel). 2022;14(14):3307. PMID: 35884368 https://doi.org/10.3390/cancers14143307
25. Smirnova SYu, Nikulina EE, Gabeeva NG, Koroleva DA, Tatarnikova SA, Smol’yaninova AK, et al. Plasma cell-free DNA in patients with diffuse large B-cell and B-cell high-grade («Double hit»/«Triple hit») lymphomas. Clinical Oncohematology. 2023;16(2):200–208. (In Russ.). https://doi.org/10.21320/2500-2139-2023-16-2200-208
26. Soloveva M, Solovev M, Yakutik I, Biderman B, Nikulina E, Risin skaya N, et al. RAS-ERK pathway genes mutations in the lesions from various tumour loci in multiple myeloma. EMJ Hematol. 2023;11(1):35–36. https://doi.org/10.33590/emjhematol/10305683
27. Catarino R, Ferreira MM, Rodrigues H, Coelho A, Nogal A, Sousa A, et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008;27(8):415–421. PMID: 18694299 https://doi.org/10.1089/dna.2008.0744
28. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154. PMID: 23197571 https://doi.org/10.1126/scitranslmed.3004742
29. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–586. PMID: 24449238 https://doi.org/10.1200/jCO.2012.45.2011
30. Frattini M, Gallino G, Signoroni S, Balestra D, Lusa L, Battaglia L, et al. Quantitative and qualitative characterization of plasma DNA identifies primary and recurrent colorectal cancer. Cancer Lett. 2008;263(2):170–181. PMID: 18395974 https://doi.org/10.1016/j.canlet.2008.03.021
31. Chan KCA, Zhang J, Hui ABY, Wong N, Lau TK, Leung TN, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50(1):88–92. PMID: 14709639 https://doi.org/10.1373/clinchem.2003.024893
32. Hou Y, Yang J, Deng F, Wang F, Peng H, Guo F, et al. Association between cell-free DNA fetal fraction and pregnant character: a retrospective cohort study of 27,793 maternal plasmas. Sci Rep. 2023;13(1):11420. PMID: 37452067 https://doi.org/10.1038/s41598-02338151-4
33. Benn P, Borrell A, Chiu RWK, Cuckle H, Dugoff L, Faas B, et al. Position statement from the Chromosome Abnormality Screening Committee on behalf of the Board of the International Society for Prenatal Diagnosis. Prenat Diagn. 2015;35(8):725–734. PMID: 25970088 https://doi.org/10.1002/pd.4608
34. Lu Y-S, Chen Y-Y, Ding S-Y, Zeng L, Shi L-C, Li Y-J, et al. Performance analy sis of non-invasive prenatal testing for trisomy 13, 18, and 21: a large-scale retrospective study (2018–2021). Heliyon. 2024;10(13):e33437. PMID: 39040373 https://doi.org/10.1016/j.heliyon.2024.e33437
35. Kwon H-J, Yun S, Joo J, Park D, Do W-J, Lee S, et al. Improving the accuracy of noninvasive prenatal testing through size-selection between fetal and maternal cfDNA. Prenat Diagn. 2023;43(13):1581–1592. PMID: 37975672 https://doi.org/10.1002/pd.6464
36. Shubina J, Jankevic T, Goltsov Yu, Mukosey IS, Kochetkova TO, Bystritsky AA, et al. Quantification of fetal DNA in the plasma of pregnant women using next generation sequen cing of frequent single nucleotide polymorphisms. Bulletin of RSMU. 2018;7(3):29– 33. (In Russ.). https://doi.org/10.24075/brsmu.2018.031
Review
For citations:
Nikulina E.E., Risinskaya N.V., Dubova O.E., Sumtsova O.V., Moysyuk Ya.G., Vasilieva V.A., Soloveva M.V., Yushkova A.A., Fevraleva I.S., Skripkina A.S., Makarik A.A., Sudarikov A.B. Effect of DNA target size on the efficiency of chimerism measurement in circulating free plasma DNA. Transplantologiya. The Russian Journal of Transplantation. 2024;16(4):458-472. https://doi.org/10.23873/2074-0506-2024-16-4-458-472