Preview

Transplantologiya. The Russian Journal of Transplantation

Advanced search

Paradox: Does liver insuffi ciency protect the patient? A hypothesis

https://doi.org/10.23873/2074-0506-2017-9-1-52-70

Abstract

Despite the fact that the key role of the liver in the formation of the immune response to injury is not in doubt, the mechanisms of weakening the immune response to infectious and noninfectious lesions in patients with hepatic failure remain unclear. We propose an original hypothesis of forming the ways to limit the amplitude of the systemic inflammatory response in patients with the end-stage liver disease. The basis of the hypothesis is the idea that as a result of reducing the intensity of the natural stimulation of membrane mCD14 receptors by the ligands of infectious nature, the basic mechanism of the systemic immune response induction by liver macrophages (Kupffer cells) is interrupted. According to the proposed hypothesis, in condition of liver failure, the synthesis of lipopolysaccharide-binding protein by hepatocytes is reduced. This leads to a decreased amplitude and intensity of the protective immune responses. This fact explains a number of clinical phenomena observed in patients with liver failure/dysfunction that consist in a reduced reactivity of the organism to the damage inflicted by infectious and noninfectious agents. The authors consider it possible to use this hypothesis in the search for new trends to prevent the immune system hyper-reactivity in sepsis, and to improve the therapeutic strategies for the management of patients at high risk of infectious complications after liver transplantation.

About the Authors

A. M. Dzyadz'ko
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation

Associate Professor, Cand. Med. Sci., Head of the Anesthesiology and Intensive Care Department

Minsk, Republic of Belarus



A. E. Shcherba
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


O. O. Rummo
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


M. L. Katin
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


A. F. Minov
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


S. V. Korotkov
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


O. A. Chugunova
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


E. O. Santotskiy
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


D. Yu. Efimov
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


M. Yu. Gurova
The Republican Scientific-Practical Center of Organ and Tissue Transplantation at the City Clinical Hospital No. 9
Russian Federation
Minsk, Republic of Belarus


References

1. Torio C.M., Andrews R.M. National Inpatient Hospital Costs: The most Expansive Conditions by Payer, 2011. Healthcare Cost and Utilization Pro ject (HCUP) Statistical Briefs. Publisher: Agency for Health Care Policy and Research (US); Statistical brief #160. PMID:24199255

2. Rummo O.O. 7 years of liver transplantation in the Republic of Belarus. Russian Journal of Transplantology and Artificial Organs. 2015;2:100–104. (In Russian).

3. Song A.T., Avelino-Silva V.I., Pe cora R.A., et al. Liver transplantation: Fifty years of experience. World J Gastroenterol. 2014;20(18):5363–5374. PMID:24833866 DOI:10.3748/wjg.v20.i18.5363

4. Mueller A.R., Platz K.P., Kremer B. Early postoperative complications following liver transplantation. Best Pract Res Clin Gastroenterol. 2004;18(5):881– 900. PMID:15494284 DOI:10.1016/j.bpg.2004.07.004

5. Kehlet H., Wilmore D.W. Multimodal strategies to improve surgical outcome. Am J Surg. 2002;183(6):630–641. PMID:12095591

6. Arroyo V, Jiménez W. Complication of cirrhosis. II. Renal and circulatory dysfunction. Lights and shadows in an important clinical problem. J Hepatol. 2000;32(1 Suppl):157–170. PMID:10728802

7. Fedos'ina E.A., Maevskaya M.V. Spontaneous bacterial peritonitis. The clinic, diagnosis, treatment, prevention. RZhGGK. 2007;(2):4–9. (In Russian).

8. Khaitov R.M., Pashchenkov M.V., Pinegin B.V. The role of pattern recognition receptors in innate and adaptive immunity. Immunologiya. 2009;1:66–76. (In Russian).

9. Janeway C.A. Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. PMID:11861602 DOI:10.1146/annurev.immunol.20.083001.084359

10. Seong S.Y., Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responces. Nat Rev Immunol. 2004;4(6):469–478. PMID:15173835 DOI:10.1038/nri1372

11. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reaction to demage. Nat Rev Immunol. 2010;10(12):826–37. PMID:21088683 DOI:10.1038/nri2873

12. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34. PMID:21235323 DOI:10.3109/08830185.2010.529976

13. Hailman E., Lichenstein H.S., Wurfel M.M., et al. Lipopolysaccharide (LPS) binding protein accelerates binding of LPS to CD14. J Exp Med. 1994;179(1):269–277. PMID:7505800

14. Wright S.D., Ramos R.A., Tobias P.S., et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431– 1433. PMID:1698311

15. Zweigner J., Schumann R.R., Weber J.R. The role of lipopolysaccharidebinding protein in modulation the innate immune response. Microbes Infect. 2006;8(3):946– 952. PMID:16483818 DOI:10.1016/j.micinf.2005.10.006

16. Krasutskaya C.A., Efimov D.Yu., Frolova M.A., et al. TLR-receptors role in pathogenesis of the complications after solid organ transplantation. Voennaya meditsina. 2016;(3):133–137. (In Russian).

17. Deng M., Scott M.J., Loughran P., et al. Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis. J Immunol. 2013;190(10):5152–5160. PMID:23562812 DOI:10.4049/jimmunol.1300496

18. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805-820. PMID:20303872 DOI:10.1016/j.cell.2010.01.022

19. Sakr Y., Dubois M.J., De Backer D., et al. Persistent microcirculatory alterations are assotiated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–1831. PMID:15343008

20. Sjövall F., Morota S., Hansson M.J., et al. Temporal increase of platelet mitochondrial is negatively associated with clinical outcome in patients with sepsis. Crit Care. 2010;14(6):R214. PMID:21106065 DOI:10.1186/cc9337

21. Leverve X.M. Mitochondrial function and substrate availability. Crit Care Med. 2007;35(9 Suppl):S454-460. PMID:17713393 DOI:10.1097/01.CCM.0000278044.19217.73

22. Lescot T., Karvellas C., Beaussier M., Magder S. Asquired Liver Injury in the Intensive Care Unit. Anesthesiology. 2012;117(4):898–904. PMID:22854981 DOI:10.1097/ALN.0b013e318266c6df

23. Bauer M., Press A.T., Trauner M. The liver in sepsis: patterns of response and injury. Curr Opin Crit Care. 2013;19(2):123–127.

24. Geier A., Frickert P., Trauner M. Mechanisms of disease: mechanisms and clinical applications of cholestasis in sepsis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(10):574–585. PMID:17008927 DOI:10.1038/ncpgasthep0602

25. Su G.L., Simmons R.L., Wang S.C. Lipopolysaccharide binding protein participation in cellular activation by LPS. Crit Rev Immunol. 1995;15(3–4):201–214. PMID:8834448

26. Efimov D.Yu., Korotkov S.V., Kireeva A.I., et al. Association between donor TLR- 4 polymorphism and acute rejection after liver transplantation. Voennaya meditsina. 2016;(3):49–55. (In Russian).

27. Efimov D.Yu., Koritko A.A., Yanushevskaya E.A., et al. Soluble cytokine profiles and complications after liver transplantation. Voennaya meditsina. 2016;(1):75–80. (In Russian).

28. Efimov D.Yu., Nosik A.V., Zhuk G.V., et al. Mechanisms and assessment of alloreactivity after liver transplantation. Meditsinskiy zhurnal. 2016;(1):50–55. (In Russian).

29. Efimov D., Shcherba A.E., Dzyadzko A.M., et al. Association between donor toll- like receptors-4 polymorphism and acute rejection after liver transplantation in Belarus. Transplantation. 2016;100(7S: Abst. 26th International Congress of Transplantation Society, Hong Kong, 18–23 Aug. 2016):S487. DOI:10.1097/01.tp.0000490147.72544.1a

30. Shcherba A.E., Kustanovich A.M., Kireyeva A.I. et al. Association of rs 913930 genotypes of TLR-4 gene with early graft dysfunction after liver transplantation. Transplantation. 2015;99(7S- 1):236–237.

31. Howell J., Gow P., Angus P., Visvanathan K. Role of toll-like receptors in liver transplantation. Liver Transpl. 2014;20(3):270–280. PMID:24243591 DOI:10.1002/lt.23793

32. Testro A.G., Visvanathan K., Skinner N., et al. Acute allograft rejection in human liver transplant recipients is associated with signaling through tolllike receptor 4: TLR4 and liver allograft rejection. J Gastroenterol Hepatol. 2011;26(1):155–163. PMID:21175809 DOI:10.1111/j.1440-1746.2010.06324.x

33. Wang F.P., Li L., Li J., et al. High mobility group Box-1 promotes the proliferation and migration of hepatic stellate cells via TLR4-Dependent signal pathways of PI3K/Akt and JNK. PLoS One. 2013;8(5):e64373. PMID:23696886 DOI:10.1371/journal.pone.0064373

34. John B., Klein I., Crispe I.N. Immune role of hepatic TLR-4 revealed by orthotopic mouse liver transplantation. Hepatology. 2007;45(1):178–186. PMID:17187407 DOI:10.1002/hep.21446

35. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–305. PMID:11951032 DOI:10.1126/science.1071059

36. Laskin D.L. Nonparenchymal cells and hepatotoxicity. Semin Liver Dis. 1990;10(4):293–304. PMID:2281337 DOI:10.1055/s-2008-1040485

37. Rappaport A.M. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol. 1976;157(3):215–43. PMID:1275864

38. Trauner M., Fickert P., Stauber R.E. Inflammation induced cholestasis. J Gastroenterol Hepatol. 1999;14(10):946–959. PMID:10530489

39. Meynaar I.A., Droog W., Batstra M., et al. In critically ill patients, serum procalcitonin is more useful in differentiating between sepsis and SIRS then CRP, IL-6 or LPB. Crit Care Res Pract. 2011;2011:594645. PMID:21687569 DOI:10.1155/2011/594645

40. Leli C., Ferranti M., Marrano U., et al. Diagnostic accuracy of presepsin (sCD14-ST) and procalcitonin for prediction of bacteraemia and bacterial DNAaemia in patients with suspected sepsis. J Med Microbiol. 2016;65(8):713–719. PMID:27170331 DOI:10.1099/jmm.0.000278

41. Zheng Z., Jiang L., Ye L., et al. The accuracy of presepsin for the diagnosis of sepsis from SIRS: a systematic review and meta-analysis. Ann Intensive Care. 2015;5(1):48. PMID:26642970 DOI:10.1186/s13613-015-0089-1

42. Zhang X., Liu D., Liu Y.N., et al. The accuracy of presepsin (sCD14-ST) for the diagnosis of sepsis in adults: a meta-analysis. Crit Care. 2015;19:323. PMID:26357898 DOI:10.1186/s13054-015-1032-4

43. Richardson P.D. Physiological regulation of the hepatic circulation. Fed Proc. 1982;41(6):2111–2116. PMID:6804268

44. Schreiber G., Urban J. The synthesis and secretion of albumin. Rev Physiol Biochem Pharmacol. 1978;82:27–95. PMID:210488

45. Abdelmegeed M.A., Song B.J. Functional Roles of Protein Nitration in Acute and Chronic Liver Diseases. Oxid Med Cell Longev. 2014;2014:149627. PMID:24876909 DOI:10.1155/2014/149627

46. Dembic Z. The Cytokines of the Immune System. The Role of Cytokines in Disease Related to Immune Response. 1st ed. 2015. 320 p.

47. Perrakis A., Stirkat F., Croner R.S. et al. Prognostic and diagnostic value of procalcitonin in the post-transplant setting after liver transplantation. Arch Med Sci. 2016;12(2):372–379. DOI:10.5114/aoms.2016.59264

48. Conti F., Dall'Agata M., Gramenzi A., Biselli M. Biomarkers for the early diagnosis of bacterial infection and the surveillance of hepatocellular carcinoma in cirrhosis. Biomark Med. 2015;9(12):1343–1351. PMID:26580585 DOI:10.2217/bmm.15.100

49. Kaido T., Ogawa K., Fujimoto Y., et al. Perioperative changes of procalcitonin levels in patients undergoing liver transplantation. Transpl Infect Dis. 2014;16(5):790–796. PMID:25154523 DOI:10.1111/tid.12282

50. Strande J.L., Routhu K.V., Hsu A., et al. Gadolinium decreases inflammation related to myocardial ischemia and reperfusion injury. J Inflamm (Lond). 2009;6:34. PMID:20003243 DOI:10.1186/1476-9255-6-34

51. Uchida M., Takemoto Y., Nagasue N., et al. Effect of verapamil on hepatic reperfusion injury after prolonged ischemia in pigs. J Hepatol. 1994;21(2):217–223. PMID:7989712

52. Hardy K.J., Tancheroen S., Shulkes A. Hepatic ischemia-reperfusion injury modification during liver surgery in rats: pretreatment with nifedipine or misoprostol. Liver Transpl Surg. 1995;1(5):302–310. PMID:9346587

53. Isozaki H., Fujii K., Nomura E., Hara H. Calcium concentration in hepatocytes during liver ischaemia-reperfusion injury and the effects of diltiazem and citrate on perfused rat liver. Eur J Gastroenterol Hepatol. 2000;12(3):291–297. PMID:10750649

54. Strieter R.M., Remick D.G., Ward P.A., et al. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun. 1988;155(3):1230–1236. PMID:2460096

55. Lemasters J.J., Thurman R.G. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol. 1997;37:327–338. PMID:9131256 DOI:10.1146/annurev.pharmtox.37.1.327

56. Wu X., Qian G., Zhao Y., Xu D. LBP inhibitory peptide reduces endotoxininduced macrophage activation and mortality. Inflamm Res. 2005;54(11):451–457. PMID:16307218 DOI:10.1007/s00011-005-1378-1

57. Ackland G.L., Gutierrez Del Arroyo A., Yao S.T., et al. Low-molecular-weight polyethylene glycol improves survival in experimental sepsis. Crit Care Med. 2010;38(2):629–636. PMID:20009757 DOI:10.1097/CCM.0b013e3181c8fcd0

58. Closa D., Bardají M., Hotter G., et al. Hepatic involvement in pancreatitisinduced lung damage. Am J Physiol. 1996;270(1 Pt 1):G6–13. PMID:8772495

59. Hoyos S., Granell S., Heredia N., et al. Influence of portal blood on the development of systemic inflammation associated with experimental acute pancreatitis. Surgery. 2005;137(2):186–191.

60. Brockmann J.G. Liver damage during organ donor procurement in donation after circulatory death compared with donation after brain death. Br J Surg. 2013;100(3):386–387. PMID:23300073 DOI:10.1002/bjs.9010

61. Shcherba A.E., Korotkov S.V, Efimov D.Yu., et al. Portal and arterial flushing with HTK and tacrolimus can attenuate the incidence of early liver allograft dysfunction. Russian Journal of Transplantology and Artificial Organs. 2015;(3):24– 31. (In Russian).

62. Shcherba A., Korotkov S., Efimov D., et al. Portal and arterial flushing with HTK and tacrolimus can attenuate the incidence of early liver allograft dysfunction. J Transl Med Res. 2016;21(2):109–115. DOI:10.21614/jtmr-21-2-82

63. Zhou F., Peng Z., Murugan R., Kellum J.A. Blood purification and mortality in sepsis: a meta-analysis a randomized trials. Crit Care Med. 2013;41(9):2209–2220. PMID:23860248 DOI:10.1097/CCM.0b013e31828cf412

64. Livigni S., Bertolini G., Rossi C., et al. Efficacy of coupled plasma filtration adsorption (SPFA) in patients with septic shock. A multicenter randomized controlled clinical trial. BMJ Open. 2014;4(1):e003536. DOI:10.1136/bmjopen-2013-003536

65. Born F., Pichmaier M., Peter S., et al. Systemic Inflammatory Response Syndrome in der Herzchirurgie: Neue Therapiemӧglichkeiten durch den Einsatz eines Cytokin-Adsorbers während EKZ? Kardiotechnik. 2014;2:41–46. DOI:10.3410/f.726162225.793514812

66. Yarustovskiy M.B., Abramyan M.V., Krotenko N.P., et al. The new concept of combined use of extracorporeal blood correction method in complex intensive therapy of severe sepsis in patients after cardiac surgery. Anesteziol i reanim. 2015;60(5):75–80. (In Russian).


Review

For citations:


Dzyadz'ko A.M., Shcherba A.E., Rummo O.O., Katin M.L., Minov A.F., Korotkov S.V., Chugunova O.A., Santotskiy E.O., Efimov D.Yu., Gurova M.Yu. Paradox: Does liver insuffi ciency protect the patient? A hypothesis. Transplantologiya. The Russian Journal of Transplantation. 2017;9(1):52-70. https://doi.org/10.23873/2074-0506-2017-9-1-52-70

Views: 1067


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)