Will the machine perfusion of the liver increase the number of donor organs suitable for transplantation?
https://doi.org/10.23873/2074-0506-2018-10-4-308-326
Abstract
Worldwide, there is a trend towards an increase in the number of patients waiting for liver transplantation, despite an increase in the total number of liver transplantation operations. Solving the problem of donor organ shortage is possible through the use of organs from marginal donors: organs removed after cardiac arrest, organs with a high percentage of steatosis, organs from donors over the age of 60 years. The main reason for refusing to use them is the risk of severe complications and an unfavorable outcome of the operation. Static cold preservation today is the main method of protecting donor organs from thermal damage, which possesses rather effective protective properties. At the same time, the duration of cold preservation has a limited time interval. There is always uncertainty about the viability of the organ. Modern methods for assessing donor organs such as donor history, laboratory data, visual examination and morphology, do not reliably predict liver function after transplantation. In this regard, the development of methods for preserving the organ after removing, which do not degrade the quality of the organ or even are capable of restoring the lost functions, is relevant. The machine perfusion of the liver is one of the new concepts aimed at solving this problem. The article highlights the international experience of using the machine perfusion of the donor liver over the past 15 years. Machine perfusion is a promising trend of transplantation development, which allows reducing the shortage of donor organs and improving their quality.
About the Authors
V. A. GulyaevRussian Federation
Vladimir A. Gulyaev – Dr. Med. Sci., Leading Researcher of the Kidney and Pancreas Transplantation Department
3 Bolshaya Sukharevskaya Sq., Moscow 129090
S. V. Zhuravel’
Russian Federation
Sergey V. Zhuravel – Dr. Med. Sci., Head of the Scientific Department of Anesthesiology and Intensive Care for Organ Transplantation
3 Bolshaya Sukharevskaya Sq., Moscow 129090
M. S. Novruzbekov
Russian Federation
Murad S. Novruzbekov – Dr. Med. Sci., Head of the Scientific Department of Anesthesiology and Intensive Care for Organ Transplantation
3 Bolshaya Sukharevskaya Sq., Moscow 129090
O. D. Olisov
Russian Federation
Oleg D. Olisov – Cand. Med. Sci., Senior Researcher of the Liver Transplantation Department
3 Bolshaya Sukharevskaya Sq., Moscow 129090
K. n Lutsyk
Russian Federation
Konstantin N. Lutsyk – Cand. Med. Sci., Head of the Operating Theatre of the Liver Transplantation City Center
3 Bolshaya Sukharevskaya Sq., Moscow 129090
M. G. Minina
Russian Federation
Marina G. Minina – Dr. Med. Sci., Head of the Moscow Coordination Center of Organ Donation
5 2-nd Botkinskiy Dr., Moscow 125284
A. S. Mironov
Russian Federation
Aleksandr S. Mironov – Cand. Med. Sci., Head of the Department of Tissue Conservation and Transplant Production
3 Bolshaya Sukharevskaya Sq., Moscow 129090
N. K. Kuznetsova
Russian Federation
Natal’ya K. Kuznetsova – Cand. Med. Sci., Senior Researcher of the Department of Anaesthesiology and Intensive Care for Organ Transplantation
3 Bolshaya Sukharevskaya Sq., Moscow 129090
K. M. Magomedov
Russian Federation
Kubay M. Magomedov – Doctor-surgeon of the Operating Theatre of the Liver Transplantation City Center
3 Bolshaya Sukharevskaya Sq., Moscow 129090
M. Sh Khubutiya
Russian Federation
Mogeli Sh. Khubutiya – Acad. of RAS, Prof., Dr. Med. Sci., President of N.V. Sklifosovsky Research Institute for Emergency Medicine
3 Bolshaya Sukharevskaya Sq., Moscow 129090
References
1. Starzl T.E., Marchioro T.L., Vonkaulla K.N., et al. Homotransplantation of the liver in humans. Surg Gynecol Obstet. 1963;117:659–676. PMID:14100514
2. Wertheim J.A., Petrowsky H., Saab S., et al. Major challenges limiting liver transplantation in the United States. Am J Transplant. 2011;11(9):1773–1784. DOI:10.1111/j.1600-6143.2011.03587.x
3. Seal J.B., Bohorquez H., Reichman T., et al. Thrombolytic protocol minimizes ischemic-type biliary complications in liver transplantation from donation after circulatory death donors. Liver Transpl. 2015;21(3):321–328. DOI:10.1002/lt.24071
4. Kim W.R., Lake J.R., Smith J.M., et al. Liver. Am J Transplant. 2016;16(Suppl 2):69–98. DOI:10.1111/ajt.13668
5. Goldaracena N., Barbas A.S., Selzner M. Normothermic and subnormothermic ex-vivo liver perfusion in liver transplantation. Curr Opin Organ Transplant. 2016;21(3):315–321. DOI:10.1097/MOT.0000000000000305
6. Singhal A., Wima K., Hoehn R.S., et al. Hospital resource use with donation after cardiac death allografts in liver transplantation: a matched controlled analysis from 2007 to 2011. J Am Coll Surg. 2015;220(5):951–958. DOI:10.1016/j.jamcollsurg.2015.01.052
7. Deshpande R., Heaton N. Can nonheart-beating donors replace cadaveric heart-beating liver donors. J Hepatol. 2006;45(4):499–503. DOI:10.1016/j. jhep.2006.07.018
8. de Vera M.E., Lopez-Solis R., Dvorchik I., et al. Liver transplantation using donation after cardiac death donors: Long-term follow-up from a single center. Am J Transplant. 2009;9(4):773–781. DOI:10.1111/j.1600-6143.2009.02560.x
9. Abt P.L., Desai N.M., Crawford M.D., et al. Survival following liver transplantation from non-heart-beating donors. Ann Surg. 2004;239(1):87–92. DOI:10.1097/01.sla.0000103063.82181.2c
10. Dutkowski P., Schlegel A., Slankamenac K., et al. The use of fatty liver grafts in modern allocation systems: risk assessment by the balance of risk (BAR) score. Ann Surg. 2012;256(5):861–868. DOI:10.1097/SLA.0b013e318272dea2
11. Nemes B., Gámán G., Polak W.G., et al. Extended-criteria donors in liver transplantation Part II: reviewing the impact of extended-criteria donors on the complications and outcomes of liver transplantation. Expert Rev Gastroenterol Hepatol. 2016;10(7):841–859. DOI:10.1586/17474124.2016.1149062
12. Drobnis E.Z., Crowe L.M., Berger T., et al. Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool. 1993;265(4):432–437. DOI:10.1002/jez.1402650413
13. Chernyak B.V., Izyumov D.S., Lyamzaev K.G., et al. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Biochim Biophys Acta. 2006;1757(5–6):525– 534. DOI:10.1016/j.bbabio.2006.02.019
14. van Golen R.F., van Gulik T.M., Heger M. Mechanistic overview of reactive species-induced degradation of the endothelial glycocalyx during hepatic ischemia/ reperfusion injury. Free Radic Biol Med. 2012;52(8):1382–1402. DOI:10.1016/j.freeradbiomed.2012.01.013
15. Zhai Y., Petrowsky H., Hong J.C., et al. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside. Nat Rev Gastroenterol Hepatol. 2013;10(2):79–89. DOI:10.1038/nrgastro.2012.225
16. Loor G., Kondapalli J., Iwase H., et al. Mitochondrial oxidant stress triggers cell death in simulated ischemiareperfusion. Biochim Biophys Acta. 2011;1813(7):1382–1394. DOI:10.1016/j. bbamcr.2010.12.008
17. Schlegel A., Graf R., Clavien P.A., Dutkowski P. Hypothermic oxygenated perfusion (HOPE) protects from biliary injury in a rodent model of DCD liver transplantation. J Hepatol. 2013;59(5):984–991. DOI:10.1016/j.jhep.2013.06.022
18. Furukawa H., Todo S., Imventarza O., et al. Effect of cold ischemia time on the early outcome of human hepatic allografts preserved with UW solution. Transplantation. 1991;51(5):1000–1004. PMID:2031256
19. Vilca Melendez H., Rela M., Murphy G., Heaton N. Assessment of graft function before liver transplantation: quest for the lost ark? Transplantation. 2000;70(4):560–565. PMID:10972207
20. Carrel A., Lindbergh C.A. The culture of whole organs. Science. 1935;81:621– 623. DOI:10.1126/science.81.2112.621
21. Marchioro T.L., Huntley R.T., Waddell W.R., Starzl T.E. Extracorporeal perfusion for obtaining postmortem homografts. Surgery. 1963;54:900–911. PMID:14087127
22. Kestens P.J., Mikaeloff P., Haxhe J.J., et al. Homotransplantation of the canine liver after hypothermic perfusion of long duration. Bull Soc Int Chir. 1966;25(6):647–659. PMID:4861669
23. Slapak M., Wigmore R.A., MacLean L.D. Twenty-four hour liver preservation by the use of continuous pulsatile perfusion and hyperbaric oxygen. Transplantation. 1967;5(4 Suppl):1154–1158. PMID:4860607
24. Brettschneider L., Groth C.G., Starzl T.E. Experimental and clinical preservation of orthotopic liver homografts. In: Norman J., ed. Organ perfusion and preservation. New York: Appleton-Century Crofts, 1968:271–284.
25. Menasche P., Termignon J.L., Pradier F., et al. Experimental evaluation of Celsior, a new heart preservation solution. Eur J Cardiothorac Surg. 1994;8(4):207– 2013. PMID:8031565
26. Stone J.P., Sevenoaks H., Sjoberg T., et al. Mechanical removal of dendritic cell-generating non-classical monocytes via ex vivo lung perfusion. J Heart Lung Transplant. 2014;33(8):864–869. DOI:10.1016/j.healun.2014.03.005
27. Karangwa S. A., Dutkowski P., Fontes P., et al. Machine Perfusion of Donor Livers for Transplantation: A Proposal for Standardized Nomenclature and Reporting Guidelines. Am J Transplant. 2016;16(10):2932–2942. DOI:10.1111/ajt.13843
28. Belzer F.O., Glass N.R., Sollinger H.W., et al. A new perfusate for kidney preservation. Transplantation. 1982;33(3):322– 323. PMID:7039039
29. Lee M.P., Gear A.R. The effect of temperature on mitochondrial membrane-linked reactions. J Biol Chem. 1974;249(23):7541–7549. PMID:4279918
30. Reeb J., Keshavjee S., Cypel M. Expanding the lung donor pool: advancements and emerging pathways. Curr Opin Organ Transplant. 2015;20(5):498–505. DOI:10.1097/MOT.0000000000000233
31. St. Peter S.D., Imber C.J., Friend .J. Liver and kidney preservation by perfusion. Lancet. 2002;359:604–613. DOI:10.1016/S0140-6736(02)07749-8
32. Chatauret N., Coudroy R., Delpech P.O., et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion's protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation. Am J Transplant. 2014;14(11):2500–2514. DOI:10.1111/ajt.12904
33. van der Plaats A., 't Hart N.A., Verkerke G.J., et al. Hypothermic machine perfusion in liver transplantation revisited: Concepts and criteria in the new millenium. Ann Biomed Eng. 2004;32(4):623–631. PMID:15117035
34. Dutkowski P., Schlegel A., de Oliveira M., et al. HOPE for human liver grafts obtained from donors after cardiac death. J Hepatol. 2014;60(4):765–772. DOI:10.1016/j.jhep.2013.11.023
35. Changani K.K., Fuller B.J., Bryant D.J., et al. Non-invasive assessment of ATP regeneration potential of the preserved donor liver. A 31P MRS study in pig liver. J Hepatol. 1997;26(2):336–342. PMID:9059955
36. Jomaa A., Gurusamy K., Siriwardana P.N., et al. Does hypothermic machine perfusion of human donor livers affect risks of sinusoidal endothelial injury and microbial infection? A feasibility study assessing flow parameters, sterility, and sinusoidal endothelial ultrastructure. Transplant Proc. 2013;45(5):1677–1683. DOI:10.1016/j.transproceed.2013.01.011
37. Hart N.A., der van Plaats A., Leuvenink H.G., et al. Determination of an adequate perfusion pressure for continuous dual vessel hypothermic machine perfusion of the rat liver. Transpl Int. 2007;20(4):343–352. DOI:10.1111/j.1432-2277.2006.00433.x
38. Fondevila C., Hessheimer A.J., Maathuis M.H., et al. Hypothermic oxygenated machine perfusion in porcine donation after circulatory determination of death liver transplant. Transplantation. 2012;94(1):22–29. DOI:10.1097/ TP.0b013e31825774d7
39. Minor T., Manekeller S., Sioutis M., Dombrowski F. Endoplasmic and vascular surface activation during organ preservation: Refining upon the benefits of machine perfusion. Am J Transplant. 2006;6(6):1355–1366. DOI:10.1111/j.16006143.2006.01338.x
40. Pienaar B.H., Lindell S.L., van Gulik T., et al. Seventy-two-hour preservation of the canine liver by machine perfusion. Transplantation. 1990;49(2):258–260. PMID:2305453
41. Guarrera J.V., Henry S.D., Samstein B., et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10(2):372–381. DOI:10.1111/j.16006143.2009.02932.x
42. Schlegel A., Dutkowski P. Role of hypothermic machine perfusion in liver transplantation. Transpl Int. 2015;28(6):677–689. DOI:10.1111/tri.12354
43. Tang D., Kang R., Zeh H.J. 3rd, Lotze M.T. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14(7):1315–1335. DOI:10.1089/ars.2010.3356
44. Schlegel A., de Rougemont O., Graf R., et al. Protective mechanisms of endischemic cold machine perfusion in DCD liver grafts. J Hepatol. 2013;58(2):278– 286. DOI:10.1016/j.jhep.2012.10.004
45. Howard T.K., Klintmalm G.B., Cofer J.B., et al. The influence of preservation injury on rejection in the hepatic transplant recipient. Transplantation. 1990;49(1):103–107. PMID:2300999
46. Liu Q., Nassar A., Farias K., et al. Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transpl. 2014;20(8);987–999. DOI:10.1002/lt.23906
47. Dutkowski P., Schönfeld S., Heinrich T., et al. Reduced oxidative stress during acellular reperfusion of the rat liver after hypothermic oscillating perfusion. Transplantation. 1999;68(1):44–50. PMID:10428265
48. Dutkowski P., Graf R., Clavien P.A. Rescue of the cold preserved rat liver by hypothermic oxygenated machine perfusion. Am J Transplant. 2006;6(5 Pt1):903–912. DOI:10.1111/j.16006143.2006.01264.x
49. Bruinsma B.G., Berendsen T.A., Izamis M., et al. Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int J Artif Organs. 2013;36(11):775– 780. DOI:10.5301/ijao.5000250
50. Guarrera J.V., Henry S.D., Samstein B., et al. Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. Am J Transplant. 2015;15(1):161– 169. DOI:10.1111/ajt.12958
51. Upadhya G.A., Topp S.A., Hotchkiss R.S., et al. Effect of cold preservation on intracellular calcium concentration and calpain activity in rat sinusoidal endothelial cells. Hepatology. 2003;37(2):313–323. DOI:10.1053/jhep.2003.50069
52. Schlegel A., Kron P., Dutkowski P. Hypothermic oxygenated liver perfusion: basic mechanisms and clinical application. Curr Transplant Rep. 2015;2(1):52– 62.
53. Dutkowski P., Polak W.G., Muiesan P., et al. First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: an international-matched case analysis. Ann Surg. 2015;262(5):764–770. DOI:10.1097/SLA.0000000000001473
54. Sutton M.E., Op den Dries S., Karimian N., et al. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PLoS ONE. 2014;9(11):e110642. DOI:10.1371/journal.pone.0110642
55. Minor T., Efferz P., Fox M., et al. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 2013;13(6):1450– 1460. DOI:10.1111/ajt.12235
56. Bruinsma B.C., Yeh H., Ozer S., et al. Subnormothermic Machine Perfusion for Ex Vivo Preservation and Recovery of the Human Liver for Transplantation. Am J Transpl. 2014;14(6):1400–1409. DOI:10.1111/ajt.12727
57. Lüer B., Koetting M., Efferz P., Minor T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transpl Int. 2010;23(9):944–950. DOI:10.1111/j.1432-2277.2010.01067.x
58. Manekeller S., Schuppius A., Stegemann J., et al. Role of perfusion medium, oxygen and rheology for endoplasmic reticulum stress-induced cell death after hypothermic machine preservation of the liver. Transpl Int. 2008;21(2):169–177. DOI:10.1111/j.1432-2277.2007.00595.x
59. Perk S., Izamis M.L., Tolboom H., et al. A metabolic index of ischemic injury for perfusion-recovery of cadaveric rat livers. PLoS ONE. 2011;6(12):e28518. DOI:10.1371/journal.pone.0028518
60. Hohenester S., Wenniger L.M., Paulusma C.C., et al. A biliary HCO3– umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology. 2012;55(1):173–183. DOI:10.1002/hep.24691
61. Berendsen T.A., Bruinsma B.G., Lee J., et al. A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transplant Res. 2012;1(1):6. DOI:10.1186/2047-1440-1-6
62. Perk S., Izamis M.L., Tolboom H., et al. A fitness index for transplantation of machine-perfused cadaveric rat livers. BMC Res Notes. 2012;5:325. DOI:10.1186/1756-0500-5-325
63. Schlegel A., Kron P., Graf R., et al. Hypothermic Oxygenated Perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation. Ann Surg. 2014;260(5):931– 937. DOI:10.1097/SLA.0000000000000941
64. Spetzler V.N., Goldaracena N., Echiverri J., et al. Subnormothermic ex vivo liver perfusion is a safe alternative to cold static storage for preserving standard criteria grafts. Liver Transpl. 2016;22(1):111–119. DOI:10.1002/lt.24340
65. Op den Dries S., Karimian N., Sutton M.E., et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transplant. 2013;13(5):1327–1335. DOI:10.1111/ajt.12187
66. Fondevila C., Hessheimer A.J, Ruiz A., et al. Liver transplant using donors after unexpected cardia death: novel preservation protocol and acceptance criteria. Am J Transplant. 2007;7(7):1849–1855. DOI:10.1111/j.1600-6143.2007.01846.x
67. Khubutiya M.Sh., Gulyayev V.A., Khvatov V.B., et al. Immunological tolerance in organ transplantation. Transplantologiya. The Russian Journal
68. Watson C.J., Kosmoliaptsis V., Randle L.V., et al. Preimplantnormothermic liver perfusion of a suboptimal liver donated after circulatory death. Am J Transplant. 2016;16(1):353–357. DOI:10.1111/ajt.13448
69. Perera T., Mergental H., Stephenson B., et al. First human liver transplantation using a marginal allograft resuscitated by normothermic machine perfusion. Liver Transpl. 2016;22(1):120–124. DOI:10.1002/lt.24369
70. Nagrath D., Xu H., Tanimura Y., et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng. 2009;11(4-5):274–283. DOI:10.1016/j. ymben.2009.05.005
71. Jamieson R.W., Zilvetti M., Roy D., et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation. 2011;92(3):289–295. DOI:10.1097/TP.0b013e318223d817
72. Nakajima D., Cypel M., Bonato R., et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16(4):1229–1237. DOI:10.1111/ajt.13562
73. Brockmann J., Reddy S., Coussios C., et al. Normothermic perfusion: A new paradigm for organ preservation. Ann Surg. 2009;250(1):1–6. DOI:10.1097/SLA.0b013e3181a63c10
74. St. Peter S.D., Imber C.J., Kay J., et al. Hepatic control of perfusate homeostasis during normothermicextrocorporeal preservation. Transplant Proc. 2003;35(4):1587–1590. PMID:12826227
75. Ravikumar R., Leuvenink H., Friend P.J. Normothermic liver preservation: a new paradigm? Transpl Int. 2015;28(6):690–699. DOI:10.1111/tri.12576
76. Laing R.W., Mergental H., Mirza D.F. Normothermic ex-situ liver preservation: the new gold standard. Curr Opin Organ Transplant. 2017;22(3):274–280. DOI:10.1097/MOT.0000000000000414
77. Shapey I.M., Muiesan P. Regional perfusion by extracorporeal membrane oxygenation of abdominal organs from donors after circulatory death: A systematic review. Liver Transpl. 2013;19(12):1292–1303. DOI:10.1002/lt.23771
78. Sanchez-Fructuoso A.I., Marques M., Prats D., et al. Victims of cardiac PMID:16880457
79. Minina M.G., Khubutiya M.Sh., Gubarev K.K., et al. Practical use of extracorporeal membrane oxygenation in organ donation for transplantation. Russian Journal of Transplantology and Artificial Organs. 2012;14(1):27–35. (In Russian). DOI:10.15825/1995-1191-20121-27-35
80. He X., Ji F., Zhiheng Zh., et al. Combined liver-kidney perfusion enhances protective effects of normothermic perfusion on liver grafts from donation after cardiac death. Liver Transpl. 2018;24(1):67–79. DOI:10.1002/lt.24954
81. Banan B., Watson R., Xu M. Development of a normothermic extracorporeal liver perfusion system toward improving viability and function of human extended criteria donor livers. Liver Transpl. 2016;22(7):979-993. DOI:10.1002/lt.24451
82. Op den Dries S. Bile duct injury in liver transplantation: studies on etiology and the protective role of machine perfusion: dissertation. Groningen, the Netherlands: University of Groningen; 2013. 253 p.
83. Trakarnsanga K., Griffiths R.E., Wilson M.C., et al. An immortalized adult human erythroid line facilitates sustainable and scalable generation of functional red cells. Nat Commun. 2017;8(7):14750. DOI:10.1038/ncomms14750
84. Gulyaev V.A. Increase in the efficiency of liver transplantation by improving the technology of seizure and preparation of a transplant: Dr. med. sci. diss. Moscow, 2016. 309 p. (In Russian).
85. Sakota D., Sakamoto R., Sobajima H., et al. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma. Artif Organs. 2008;32(10):785–791. DOI:10.1111/j.15251594.2008.00631.x
86. Fontes P., Lopez R., van der Plaats A., et al. Liver preservation with machine perfusion and a newly developed cell free oxygen carrier solution under subnormothermic conditions. Am J Transplant. 2015;15(2):381–394. DOI:10.1111/ajt.12991
87. Rauen U., Petrat F., Li T., De Groot H.H. Hypothermia injury/cold induced apoptosis–evidence of an increase in chelatable iron causing oxidative injury in–spite of low O2 / H O2 formation. FASEB J. 2000;14(13):1953–1964. DOI:10.1096/fj.00-0071com
88. Selzner M., Goldaracena N., Echeverri J., et al. Normothermic ex vivo liver perfusion using Steen solution as perfusate for human liver transplantation-first North American results. Liver Transpl. 2016;22(11):1501–1508. DOI:10.1002/lt.24499
89. Niemann C.U., Feiner J., Swain S., et al. Therapeutic Hypothermia in Deceased Organ Donors and Kidney-Graft Function. N Engl J Med. 2015;373(27):405–414. DOI:10.1056/NEJMc1511744
90. Barbas A.S., Knechtle S.J. Expanding the Donor Pool With Normothermic Ex Vivo Liver Perfusion: The Future Is Now. Am J Transplant. 2016;16(11):3075– 3076. DOI:10.1111/ajt.13959
91. Ravikumar R., Jassem W., Mergental H., et al. Liver transplantation after ex vivo normothermic machine preservation: a phase 1 (first-in-man) clinical trial. Am J Transplant. 2016;16(6):1779– 1787. DOI:10.1111/ajt.13708
92. Graham J.A., Guarrera J.V. “Resuscitation” of marginal liver allografts for transplantation with machine perfusion technology. J Hepatol. 2014;61(2):418–431. DOI:10.1016/j.jhep.2014.04.019
93. Mergental H., Perera T., Laing R.W., et al. Transplantation of Declined Liver Allografts Following Normothermic Ex-Situ Evaluation. Am J Transplant. 2016;16(11):3235–3245. DOI:10.1111/ajt.13875
94. Quillin R.C., Guarrera J.V. “In 10 years” of debate: Pro–machine perfusion for liver preservation will be universal. Liver Transpl. 2016;22(Suppl 1):S25–S28. DOI:10.1002/lt.24630
Review
For citations:
Gulyaev V.A., Zhuravel’ S.V., Novruzbekov M.S., Olisov O.D., Lutsyk K.n., Minina M.G., Mironov A.S., Kuznetsova N.K., Magomedov K.M., Khubutiya M.Sh. Will the machine perfusion of the liver increase the number of donor organs suitable for transplantation? Transplantologiya. The Russian Journal of Transplantation. 2018;10(4):308-326. https://doi.org/10.23873/2074-0506-2018-10-4-308-326