Preview

Трансплантология

Расширенный поиск

Физиологические аспекты улучшения функции миокарда на фоне механической поддержки кровообращения

https://doi.org/10.23873/2074-0506-2019-11-4-311-319

Полный текст:

Аннотация

Механическая поддержка кровообращения в последние годы зарекомендовала себя как жизненно важная терапия терминальной сердечной недостаточности, которая рассматривается в качестве «моста» к трансплантации либо на постоянной основе в случаях, когда пациент не может быть включен в лист ожидания донорского органа. Последние исследования в лечении критической сердечной недостаточности при поддержке вспомогательным устройством показывают, что миокард восстанавливается на молекулярном и клеточном уровнях. Однако переход этих изменений в функционально-стабильное восстановление деятельности сердца, позволяющее добиться долгосрочных результатов без трансплантации сердца или отключением механической поддержки, в настоящее время является скорее исключением из правил. Причина несоответствия между высокой скоростью восстановления на клеточном и молекулярном уровнях и низкой скоростью восстановления функциональности сердца в настоящий момент остается малоизученной. Пациенты с хронической прогрессирующей сердечной недостаточностью демонстрируют нормализацию многих структурных аномалий миокарда после механической поддержки, что фактически является обратным ремоделированием. Однако обратное ремоделирование не всегда приравнивается к клиническому выздоровлению. Целью данной работы является анализ значительного улучшения структуры и функции миокарда на фоне механической поддержки кровообращения.

Об авторах

Д. В. Шумаков
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Дмитрий Валерьевич Шумаков член-корр. РАН, проф., руководитель отдела хирургии сердца и сосудов

129110, Россия, Москва, ул. Щепкина, д. 61/2



Д. И. Зыбин
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Дмитрий Игоревич Зыбин канд. мед. наук, заведующий отделением кардиохирургии

129110, Россия, Москва, ул. Щепкина, д. 61/2



М. А. Попов
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Михаил Александрович Попов научный сотрудник отделения кардиохирургии

129110, Россия, Москва, ул. Щепкина, д. 61/2



Список литературы

1. Farrar DJ, Holman WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow-up of Thoratec ventricular assist device bridge-torecovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9

2. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–896. PMID: 17761592 https://doi.org/10.1056/NEJMoa067758

3. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–2251. PMID: 19920051 https://doi.org/10.1056/NEJMoa0909938

4. Müller J, Wallukat G, Weng Y, Dandel M, Spiegelsberger S, Semrau S, et al. Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation. 1997;96(2):542–549. PMID: 9244223 https://doi.org/10.1161/01.cir.96.2.542

5. Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999;68(2):742–749. PMID: 10475481 https://doi.org/10.1016/S0003-4975(99)00542-1

6. Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl H B, Hetzer R. Longterm results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation. 2005;112(9Suppl):37–45. PMID: 16159848 https://doi.org/10.1055/s-2005-861953

7. Frazier OH, Benedect CR, Radovancevic B, Bick RJ, Capek P, Springer WE, et al. Improved left ventricular function after chronic left ventricular unloading. Ann Thorac Surg. 1996;62(3):675–682. PMID:8783992 https://doi.org/10.1016/S0003-4975(96)00437-7

8. Hall JL, Fermin DR, Birks EJ, Barton PJ, Slaughter M, Eckman P, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57(6):641–652. PMID: 21292124 https://doi.org/10.1016/j.jacc.2010.11.010

9. Akhter SA, D'Souza KM, Malhotra R, Staron ML, Valeroso TB, Fedson SE, et al. Reversal of impaired myocardial beta-adrenergic receptor signaling by continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2010;29(6):603–609. PMID: 20202864 https://doi.org/10.1016/j.healun.2010.01.010

10. Saito S, Matsumiya G, Sakaguchi T, Miyagawa S, Yamauchi T, Kuratani T, et al. Cardiac fibrosis and cellular hypertrophy decrease the degree of reverse remodeling and improvement in cardiac function during left ventricular assist. J Heart Lung Transplant. 2010;29(6):672–679. PMID: 20188595 https://doi.org/10.1016/j.healun.2010.01.007

11. Ogletree ML, Sweet WE, Talerico C, Klecka ME, Young JB, Smedira NG, et al. Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transplant. 2010;29(5):554–561. PMID: 20044278 https://doi.org/10.1016/j.healun.2009.10.015

12. Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, et al. Cardiac improvement d uring mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation. 2007;115(19):2497–2505. PMID: 17485581 https://doi.org/10.1161/CIRCULATIONAHA.106.633180

13. Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4:425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326

14. Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB, Hendry PJ, et al. Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant. 2002;21(5):516–521. PMID: 11983540 https://doi.org/10.1016/S1053-2498(01)00408-9

15. Simon MA, Kormos RL, Murali S, Nair P, Heffernan M, Gorcsan J, et al. Myocardial recovery using ventricular assist devices: prevalence, clinical characteristics, and outcomes. Circulation. 2005;112(9Suppl):132–136. PMID: 16159839 https://doi.org/10.1161/CIRCULATIONAHA.104.524124

16. Birks E J, Tansley P D, Hardy J, George R S, Bowles C T, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failur e. N Engl J Med. 2006;355(18):1873–1884. PMID: 17079761 https://doi.org/10.1056/NEJMoa053063

17. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T, Lehmkuhl HB, et al. Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation. 2008;118(14Suppl):S94–105. PMID: 18824777 https://doi.org/10.1161/CIRCULATIONAHA.107.755983

18. Hetzer R, Dandel M, Knosalla C. Left ventricular assist devices and drug therapy in heart failure. N Engl J Med. 2007;356(8):869–870. PMID: 17314351 https://doi.org/10.1056/NEJMc063394

19. Dandel M, Weng Y, Siniawski H, Stepanenko A, Krabatsch T, Potapov E, et al. Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J. 2011;32(9):1148–1160. PMID: 20929978 https://doi.org/10.1093/eurheartj/ehq353

20. Dandel M, Weng Y, Siniawski H, Potapov E, Krabatsch T, Lehmkuhl HB, et al. Pre-explant stability of unloading promoted cardiac improvement predicts outcome after weaning from ventricular assist devices. Circulation. 2012;126(11Suppl):S9–19. PMID: 22965998 https://doi.org/10.1161/CIRCULATIONAHA.111.084640

21. Swynghedauw B. Molecular mechanisms of myocardial remode ling. Physiol Rev. 1999;79(1):215–262. PMID: 9922372 https://doi.org/10.1152/physrev.1999.79.1.215

22. van Empel V, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67(1):21–29. PMID:15896727 https://doi.org/10.1016/j.cardiores.2005.04.012

23. van Empel V, De Windt LJ. Myocyte hypertrophy and apoptosis: a balan cing act. Cardiovasc Res. 2004;63(3):487–499. PMID: 15276474 https://doi.org/10.1016/j.cardiores.2004.02.013

24. Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation. 1999;100(9):999–1008. PMID: 10468532 https://doi.org/10.1161/01.cir.100.9.999

25. Hughes SE. The pathology of hypertrophic cardiomyopathy. Histopathology. 2004;44(5):412–427. PMID: 151399989 https://doi.org/10.1111/j.1365-2559.2004.01835.x

26. Catena E, Milazzo F. Echocardiography and cardiac assist devices. Minerva Cardioangiol. 2007;55(2):247–265. PMID: 17342042

27. Scheinin SA, Capek P, Radovancevic B, Duncan JM, McAllister HA Jr, Frazier OH. The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J. 1992;38(3):M271–M274. PMID: 1457863 https://doi.org/10.1097/00002480-199207000-00035

28. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91(11):2717–2720. PMID: 7758175 https://doi.org/10.1161/01.cir.91.11.2717

29. Razeghi P, Bruckner BA, Sharma S, Youker KA, Frazier OH, Taegtmeyer H. Mechanical unloading of the failing human heart fails to activate the protein kinase B/Akt/glycogen synthase kinase-3beta survival pathway. Cardiology. 2003;100(1):17–22. PMID: 12975541 https://doi.org/10.1159/000072387

30. Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tjan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668-674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7

31. Nag AC, Zak R. Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study. J Anat. 1979;129(Pt3):541–559. PMID: 120352

32. Yacoub MH. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery. Eur Heart J. 2001;22(7):534–540. PMID: 11259141 https://doi.org/10.1053/euhj.2001.2613

33. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98(7):656–662. PMID: 9715858 https://doi.org/10.1161/01.cir.98.7.656

34. Razeghi P, Taegtmeyer H. Hypertrophy and atrophy of the heart: the other side of remodeling. Ann N Y Acad Sci. 2006;1080:110–119. PMID: 17132779 https://doi.org/10.1196/annals.1380.011

35. Wohlschlaeger J, Sixt SU, Stoeppler T, Schmitz KJ, Levkau B, Tsagakis K, et al. Ventricular unloading is associated with increased 20s proteasome protein expression in the myocardium. J Heart Lung Transplant. 2010;29(1):125–132 PMID: 19837610 https://doi.org/10.1016/j.healun.2009.07.022

36. Soppa GK, Barton PJ, Terracciano CM, Yacoub MH. Left ventricular assist device-induced molecular changes in the failing myocardium. Curr Opin Cardiol. 2008;23(3):206–18. PMID: 18382208 https://doi.org/10.1097/HCO.0b013e3282fc7010

37. Terracciano CM, Hardy J, Birks EJ, Khaghani A, Banner NR, Yacoub MH. Clinical recovery from end-stage heart failure using left-ventricular assist device and pharmacological therapy correlates with increased sarcoplasmic reticulum calcium content but not with regression of cellular hypertrophy. Circulation. 2004;109(19):2263–2265. PMID: 15136495 https://doi.org/10.1161/01. CIR.0000129233.51320.92

38. Hall JL, Birks EJ, Grindle S, Cullen ME, Barton PJ, Rider JE, et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur Heart J. 2007;28(5):613–627. PMID: 17132651 https://doi.org/10.1093/eurheartj/ehl365

39. Vatta M, Stetson SJ, Perez-Verdia A, Entman ML, Noon GP, TorreAmione G, et al. Molecular remodelling of dystrophin in patients with endstage cardiomyopathies and reversal in patients on assistance-device therapy. Lancet. 2002;359(9310):936–941. PMID: 11918913 https://doi.org/10.1016/S0140-6736(02)08026-1

40. Birks EJ, Hall JL, Barton PJ, Grindle S, Latif N, Hardy JP, et al. Gene profiling changes in cytoskeletal proteins during clinical recovery after left ventricular-assist device support. Circulation. 2005;112(9Suppl):I57–I64. PMID: 16159866 https://doi.org/10.1161/CIRCULATIONAHA.104.526137

41. Latif N, Yacoub MH, George R, Barton PJR, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant. 2007;26(3):230–235. PMID: 17346624 https://doi.org/10.1016/j.healun.2006.08.011

42. de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig- Meyling FH, Robles de Medina EO. Left ventricular assist device In end-stage heart failure: persistence of structural myocyte damage after unloa ding: Animmunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39(6):963–969. PMID: 11897437 https://doi.org/10.1016/S0735-1097(02)01713-8

43. Ambardekar AV, Walker JS, Walker LA, Cleveland JC Jr, Lowes BD, Buttrick PM. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ Heart Fail. 2011;4(4):425–432. PMID: 21540356 https://doi.org/10.1161/CIRCHEARTFAILURE.111.961326

44. Lee SH, Doliba N, Osbakken M, Oz M, Mancini D. Improvement of myocardial mitochondrial function after hemodynamic support with left ventricular assist devices in patients with heart failure. J Thorac Cardiovasc Surg. 1998;116(2):344–349. PMID: 9699589 https://doi.org/10.1016/S0022-5223(98)70136-9

45. Mital S, Loke KE, Addonizio LJ, Oz MC, Hintze TH. Left ventricular assist device implantation augments nitric oxide dependent control of mitochondrial respirationin failing human hearts. J Am Coll Cardiol. 2000;36(6):1897–1902. PMID: 11092662 https://doi.org/10.1016/S0735-1097(00)00948-7

46. Heerdt PM, Schlame M, Jehle R, Barbone A, Burkhoff D, Blanck TJ. Diseasespecific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg. 2002;73(4):1216–1221. PMID: 11996266 https://doi.org/10.1016/S0003-4975(01)03621-9

47. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, et al. Myocardial expression of the arginine: glycineamidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation. 2006;114(1Suppl):I16–I20. PMID: 16820567 https://doi.org/10.1161/CIRCULATIONAHA.105.000448

48. Doenst T, Abel ED. Spotlight on metabolic remodelling in heart failure. Cardiovasc Res. 2011;90(2):191–193. PMID: 21429943 https://doi.org/10.1093/cvr/cvr077

49. Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, et al. Markers of autophagy are down regulated in failing human heart after mechanical unloading. Circulation. 2009;120(11Suppl):S191–S197. PMID: 19752367 https://doi.org/10.1161/CIRCULATIONAHA.108.842252

50. Baba HA, Grabellus F, August C, Plenz G, Takeda A, Tijan TD, et al. Reversal of metallothionein expression is different throughout the human myocardium after prolonged left-ventricular mechanical support. J Heart Lung Transplant. 2000;19(7):668–674. PMID: 10930816 https://doi.org/10.1016/S1053-2498(00)00074-7

51. Grabellus F, Schmid C, Levkau B, Breukelmann D, Halloran PF, August C, et al. Reduction of hypoxia-inducible heme oxygenase-1 in the myocardium after left ventricular mechanical support. J Pathol. 2002;197(2):230–237. PMID: 12015748 https://doi.org/10.1002/path.1106

52. Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol. 2010;56(5):382–391. PMID: 20650360 https://doi.org/10.1016/j.jacc.2010.04.019

53. Manginas A, Tsiavou A, Sfyrakis P, Giamouzis G, Tsourelis L, Leontiadis E, et al. Increased number of circulating progenitor cells after implantation of ventricular assist devices. J Heart Lung Transplant. 2009;28(7):710–717. PMID: 19560700 https://doi.org/10.1016/j.healun.2009.04.006

54. Wohlschlaeger J, Levkau B, Brockoff G, Schmitz K J, von Winterfeld M, Takeda A, et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 2010;121(8):989–996. PMID: 20159834 https://doi.org/10.1161/CIRCULATIONAHA.108.808071

55. Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, et al. Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation. 2005;112(3):364–374. PMID: 15998679 https://doi.org/10.1161/CIRCULATIONAHA.104.515106

56. Blaxall BC, Tschannen-Moran BM, Milano CA, Koch WJ. Differential gene expression and genomic patient stratification following left ventricular assist device support. J Am Coll Cardiol. 2003;41(7):1096–1106. PMID: 12679207 https://doi.org/10.1016/S0735-1097(03)00043-3

57. Margulies KB, Matiwala S, Cornejo C, Olsen H, Craven WA, Bednarik D. Mixed messages: transcription patterns in failin g and recovering human myocardium. Circ Res. 2005;96(5):592–599. PMID: 15718504 https://doi.org/10.1161/01.RES.0000159390.03503.c3

58. Matkovich SJ, VanBooven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, et al. Reciprocal regu lation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119(9):1263–1271. PMID:19237659 https://doi.org/10.1161/CIRCULATIONAHA.108.813576

59. de Weger RA, Schipper ME, Sierade Koning E, van der Weide P, Quadir R, Lahpor JR, et al. Proteomic profiling of the human failing heart after left ventricular assist device support. J Heart Lung Transplant. 2011;30(5):497–506. PMID: 21211997 https://doi.org/10.1016/j.healun.2010.11.011

60. Ramani R, Vela D, Segura A, McNamara D, Lemster B, Samarendra V, et al. A micro-ribonucleic acid signature associated with recovery from assist device support in 2 groups of patients with severe heart failure. J Am Coll Cardiol. 2011;58(22):2270–2278. PMID: 22093502 https://doi.org/10.1016/j.jacc.2011.08.041

61. Bruggink AH, de Jonge N, van Oosterhout MF, van Wichen DF, de Ko ning E, Lahpor JR, et al. Brain natriuretic peptide is produced both by cardiomyocytes and cells infiltrating the heart in patients with severe heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2006;25(2):174–180. PMID: 16446217 https://doi.org/10.1016/j.healun.2005.09.007

62. Torre-Amione G, Stetson SJ, Youker KA, Durand JB, Radovancevic B, Delgado RM, et al. Decreased expression of tumor necrosis factor-α in failing human myocardium after mechanical circulatory support: a potential mechanism for cardiac recovery. Circulation. 1999;100(11):1189–1193. PMID: 10484539 https://doi.org/10.1161/01.cir.100.11.1189

63. Hall JL, Grindle S, Han X, Fermin D, Park S, Chen Y, et al. Genomic profiling of the human heart before and after mechanical support with a ventricular assist device reveals alterations in vascular signaling networks. Physiol Genomics. 2004;17(3):283–291. PMID: 14872006 https://doi.org/10.1152/physiolgenomics.00004.2004

64. James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, et al. Effect of implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(9Suppl):II191–II195. PMID: 7586406 https://doi.org/10.1161/01.CIR.92.9.191

65. Drakos SG, Athanasoulis T, Malliaras KG, Terrovitis JV, Diakos N, Koudoumas D, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging. 2010;3(1):64–70. PMID: 20129533 https://doi.org/10.1016/j.jcmg.2009.10.008

66. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–2849. PMID: 15927992 https://doi.org/10.1161/CIRCULATIONAHA.104.500546

67. Mann DL, Burkhoff D. Myocardial expression levels of micro-ribonucleic acids in patients with left ventricular assist devices signature of myocardial recovery, signature of reverse remodeling, or signature with no name? J Am Coll Cardiol. 2011;58(22):2279–81. PMID: 22093503 https://doi.org/10.1016/j.jacc.2011.09.007

68. Koitabashi N, Kass DA. Reverse remodeling in heart failure-mechanisms and therapeutic opportunities. Nat Rev Cardiol. 2011;9(3):147–157. PMID: 22143079 https://doi.org/10.1038/nrcardio.2011.172

69. Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, et al. Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol. 2011;26(3):245–255. PMID: 21451407 https://doi.org/10.1097/HCO.0b013e328345af13


Для цитирования:


Шумаков Д.В., Зыбин Д.И., Попов М.А. Физиологические аспекты улучшения функции миокарда на фоне механической поддержки кровообращения. Трансплантология. 2019;11(4):311-319. https://doi.org/10.23873/2074-0506-2019-11-4-311-319

For citation:


Shumakov D.V., Zybin D.I., Popov M.A. Physiological aspects of myocardial function improving during mechanical circulatory support. Transplantologiya. The Russian Journal of Transplantation. 2019;11(4):311-319. (In Russ.) https://doi.org/10.23873/2074-0506-2019-11-4-311-319

Просмотров: 108


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)