Preview

Трансплантология

Расширенный поиск

Вектор развития трансплантационной медицины: индукция иммунной толерантности или регуляция иммунного ответа?

https://doi.org/10.23873/2074-0506-2022-14-2-195-209

Полный текст:

Аннотация

Одним из величайших достижений медицины за последнее столетие стало внедрение трансплантации органов. Однако, несмотря на значительный потенциал трансплантологии, зачастую являющейся единственным способом терапии тяжелых заболеваний, токсичность иммуносупрессивных препаратов, поддерживающих трансплантат, остается серьезной проблемой для ее дальнейшего развития. Модификация иммунного ответа с целью формирования толерантности к трансплантируемому органу может сыграть важную роль на пути к минимизации иммуносупрессии. Зафиксированные в литературе успешные случаи отмены иммуносупрессивных препаратов по медицинским показаниям при трансплантации почек и печени, а также результаты, полученные в процессе моделирования такой ситуации в эксперименте, доказывают, что достижение толерантности при трансплантации органов принципиально возможно.

Целью данного обзора является исследование путей иммунологической супрессии и механизмов формирования иммунологической толерантности в области трансплантологии, а также рассмотрение в этой связи последних клинических достижений. В обзоре приведены различные подходы к индукции центральной толерантности при трансплантации солидных органов, реализованные в рамках оригинальных клинических протоколов. Отдельное внимание уделяется новому направлению в трансплантационной медицине – клеточным технологиям, толерогенный эффект которых обеспечивается путем активации периферических механизмов, в частности, за счет активации супрессорной функции регуляторных Т-клеток.

Мы уделяем отдельное внимание преимуществам и недостаткам этих двух направлений. Какой из них предпочтителен? В каком направлении будет развиваться научная мысль для реализации многолетней цели трансплантологов – избежать отторжения аллотрансплантата без нарушения параметров физиологического гомеостаза организма? Возможные ответы на эти вопросы обсуждены в настоящем обзоре.

Об авторах

А. В. Кильдюшевский
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Александр Вадимович Кильдюшевский, проф., д-р мед. наук, ведущий научный сотрудник отделения клинической гематологии и иммунотерапии

129110, Москва, ул. Щепкина, д. 61/2



Я. Г. Мойсюк
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Ян Геннадиевич Мойсюк, проф., д-р мед. наук, руководитель отдела трансплантологии

129110, Москва, ул. Щепкина, д. 61/2



Т. А. Митина
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Татьяна Алексеевна Митина, д-р мед. наук, руководитель отделения клинической гематологии и иммунотерапии

129110, Москва, ул. Щепкина, д. 61/2



И. А. Кофиади
ФГБУ «ГНЦ Институт иммунологии» ФМБА России
Россия

Илья Андреевич Кофиади, проф., д-р биол. наук, заведующий лабораторией молекулярной иммуногенетики

115522, Москва, Каширское ш., д. 24



Ю. Ю. Чуксина
ГБУЗ МО МОНИКИ им. М.Ф. Владимирского
Россия

Юлия Юрьевна Чуксина, канд. мед. наук, старший научный сотрудник лаборатории биомедицинских методов исследования

129110, Москва, ул. Щепкина, д. 61/2



Список литературы

1. Ponticelli C. The mechanisms of acute transplant rejection revisited. J Nephrol. 2012;25(2):150–158. PMID: 22101676 https://doi.org/10.5301/jn.5000048

2. Siu JHY, Surendrakumar V, Richards JA, Pettigrew GJ. T cell allorecognition pathways in solid organ transplantation. Front Immunol. 2018;9:2548. PMID: 30455697 https://doi.org/10.3389/fimmu.2018.02548

3. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428–1433. PMID: 28280247 https://doi.org/10.1126/science.aaf1292

4. Katabathina V, Menias CO, Pick hardt P, Lubner M, Prasad SR. Complications of immunosuppressive therapy in solid organ transplantation. Radiol Clin N Am. 2016;54(2):303–319. PMID: 26896226 https://doi.org/10.1016/j.rcl.2015.09.009

5. Rodr í guez-Per á lvarez M, Ger mani G, Darius T, Lerut J, Tsochatzis E, Burroughs AK. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. Am J Transplant. 2012;12(10):2797–2814. PMID: 22703529 https://doi.org/10.1111/j.1600-6143.2012.04140.x

6. Vajdic CM, van Leeuwen MT. Cancer incidence and risk factors after solid organ transplantation. Int J Cancer. 2009;125(8):1747–1754. PMID: 19444916 https://doi.org/10.1002/ijc.24439

7. Lee HH, Joung JY, Kim SH. The effect of subsequent immunosuppressant use in organ-transplanted patients on prostate cancer incidence: a retrospective analysis using the Korean National Health Insurance Database. BMC Urol. 2021;21(1):112. PMID: 28457708 https://doi.org/10.1186/s12894-021-00883-8

8. Engels E.A, Pfeiffer RM, Fraumeni JF, Kasiske BL, Israni AK, Snyder JJ, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–1901. PMID: 22045767 https://doi.org/10.1001/jama.2011.1592

9. Collett D, Mumford L, Banner NR, Neuberger J, Watson C. Compari son of the incidence of malignancy in recipients of different types of organs: a UK Registry audit. Am J Trans plant. 2010;10(8):1889–1896. PMID: 20659094 https://doi.org/10.1111/j.1600-6143.2010.03181.x

10. Imamura R, Nakazawa S, Yamanaka K, Kakuta Y, Tsutahara K, Taniguchi A, et al. Cumulative cancer incidence and mortality after kidney transplantation in Japan: a long-term multicenter cohort study. Cancer Med. 2021;10(7):2205–2215. PMID: 3331470 https://doi.org/10.1002/cam4.3636

11. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59–67. PMID: 17617273 https://doi.org/10.1016/S0140-6736(07)61050-2

12. Karami S, Yanik EL, Moore LE, Pfeiffer RM, Copeland G, Gonsalves L, et al. Risk of renal cell carcinoma among kidney transplant recipients in the United States. Am J Transplant. 2016;16(12):3479–3489. PMID: 27160653 https://doi.org/10.1111/ajt.13862

13. Ojo AO, Held PJ, Port FK, Wolfe RA, Leichtman AB, Young EW, et al. Chronic renal failure after transplantation of a nonrenal organ. N Engl J Med. 2003;349(10):931–940. PMID: 12954741 https://doi.org/10.1056/NEJMoa021744

14. Levitsky J. Operational tolerance: past lessons and future prospects. Liver Transpl. 2011;17(3):222–32. PMID: 21384504 https://doi.org/10.1002/lt.22265

15. Billingham RE, Medawar PB. The technique of free skin grafting in mammals. J Exp Biol. 1951;28(3):385–402. https://doi.org/10.1242/jeb.28.3.385

16. Owen RD. Immunogenetic con sequences of vascular anastomo ses between bovine twins. Science. 1945;102(2651):400–401. PMID: 17755278 https://doi.org/10.1126/science.102.2651.400

17. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–606. PMID: 13099277 https://doi.org/10.1038/172603a0

18. Eder M, Schwarz C, Kammer M, Jacobsen N, Stavroula ML, Cowan MJ, et al. Allograft and patient survival after sequental HSCT and kidney transplantation from the same donor – a multicenter analysis. Am J Transplant. 2019;19(2):475–487. PMID: 29900661 https://doi.org/10.1111/ajt.14970

19. Oura T, Cosimi AB, Kawai T. Chimerism-based tolerance in organ transplantation: preclinical and clinical studies. Clin Exp Immunol. 2017;189(2):190–196. PMID: 28369830 https://doi.org/10.1111/cei.12969

20. Kawai T, Cosimi AB, Spitzer TR, Tolkoff-Rubin N, Suthanthiran M, Saidman SL, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med. 2008;24;358(4):353–361. PMID: 18216355 https://doi.org/10.1056/NEJMoa071074

21. Buhler LH, Spitzer TR, Sykes M, Sachs DH, Delmonico FL, Tolkoff-Rubin N, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and endstage renal disease. Transplantation. 2002;74(10):1405–1409. PMID: 12451240 https://doi.org/10.1097/00007890-200211270-00011

22. Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Millan MT, Shi zuru JA, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med. 2008;358(4):362–368. PMID: 18216356 https://doi.org/10.1056/NEJMoa074191

23. Andreola G, Chittenden M, Shaffer J, Cosimi AB, Kawai T, Cotter P, et al. Mechanisms of donor-specific tolerance in recipients of haploidentical combined bone marrow/kidney transplantation. Am J Transplant. 2011;11(6):1236-1247. PMID: 21645255 https://doi.org/10.1111/j.1600-6143.2011.03566.x

24. Colson YL, Li H, Boggs SS, Patrene KD, Johnson PC, Ildstad ST. Durable mixed allogeneic chimerism and tolerance by a nonlethal radiation-based cytoreductive approach. J Immunol. 1996;157(7):2820–2829. PMID: 8816385

25. Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a non-lethal preparative regimen. J Exp Med. 1989;169(2):493–502. PMID: 2562984 https://doi.org/10.1084/jem.169.2.493

26. Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone-marrow leads to specific acceptance of allografts or xenografts. Nature. 1984;307(5947):168–70. PMID: 6361574 https://doi.org/10.1038/307168a0

27. Ramakrishnan SK, Page A, Far ris AB 3rd , Singh K, Leopardi F, Hamby K, et al. Evidence for kidney rejection after combined bone marrow and renal transplantation despite ongoing whole-blood chimerism in rhesus macaques. Am J Transplant. 2012;12(7):1755–1764. PMID: 22642491 https://doi.org/10.1111/j.1600-6143.2012.04045.x

28. Xu H, Chilton PM, Huang Y, Schanie CL, Yan J, Ildstad ST. Addition of cyclophosphamide to T-cell depletion-based nonmyeloab-lative condi tioning allows donor T-cell engraftment and clonal deletion of alloreactive host T-cells after bone marrow transplantation. Transplantation. 2007;83(7):954–963. PMID: 17460568 https://doi.org/10.1097/01.tp.0000258679.18684.b0

29. Umemura A, Morita H, Li XC, Tahan S, Monaco AP, Maki T. Dissociation of hemopoietic chimerism and allograft tolerance after allogeneic bone marrow transplantation. J Immunol. 2001;167(6):3043–3048. PMID: 11544287 https://doi.org/10.4049/jimmunol.167.6.3043

30. Xu H, Ildstad ST. Transplanta tion: is donor T-cell engraftment a biomarker for tolerance? Nat Rev Nephrol. 2012;8(10):560–561. PMID: 22868709 https://doi.org/10.1038/nrneph.2012.187

31. Leventhal J, Abecassis M, Miller J, Gallon L, Ravindra K, Tollerud DJ, et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med. 2012;4(124):124ra28. PMID: 22399264 https://doi.org/10.1126/scitranslmed.3003509

32. Niederwieser D, Maris M, Shi zuru JA, Petersdorf E, Hegenbart U, Sandmaier BM, et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood. 2003;101(4):1620–1629. PMID: 12393457 https://doi.org/10.1182/blood-2002-05-1340

33. Jochum C, Beste M, Zellmer E, Graves SS, Storb R. CD154 bloc kade and donor-specific transfusions in DLA-identical marrow transplanta tion in dogs conditioned with 1-Gy total body irradiation. Biol Blood Marrow Transplant. 2007;13(2):164–171. PMID: 17241922 https://doi.org/10.1016/j.bbmt.2006.10.031

34. Ozyurek E, Cowan MJ, Koerper MA, Baxter-Lowe LA, Dvorak CC, Horn BN. Increasing mixed chimerism and the risk of graft loss in children undergoing allogeneic hematopoietic stem cell transplantation for non-malignant disorders. Bone Marrow Transplant. 2008;42(2):83–91. PMID: 18391990 https://doi.org/10.1038/BMT.2008.89

35. Fudaba Y, Spitzer TR, Shaffer J, Kawai T, Fehr T, F Delmonico, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant. 2006;6(9):2121–2133. PMID: 16796719 https://doi.org/10.1111/j.1600-6143.2006.01434.x

36. Scandling JD, Busque S, Shizu ru JA, Lowsky R, Hoppe R, Dejbakhsh-Jones S, et al. Chimerism, graft survival, and withdrawal of immunosuppressive drugs in HLA matched and mismatched patients after living donor kidney and hematopoietic cell transplantation. Am J Transplant. 2015;15(3):695–704. PMID: 25693475 doi 10.1111/ajt.13091

37. Kawai T, Sachs DH, Sprangers B, Spitzer TR, Saidman SL, Zorn E, et al. Longterm results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am J Transplant. 2014;14(7):1599–1611. PMID: 24903438 https://doi.org/10.1111/ajt.12731

38. Leventhal JR, Elliott MJ, Yolcu ES, Bozulic LD, Tollerud DJ, Mathew JM, et al. Immune reconstitution/immu nocompetence in recipients of kid ney plus hematopoietic stem/ facilitating cell transplants. Trans plantation. 2015;99(2):288–298. PMID: 25594553 https://doi.org/10.1097/TP.0000000000000605

39. Lee KW, Park JB, Park H, Kwon Y, Lee JS, Kim KS, et al. Inducing transient mixed chimerism for allograft survival without maintenance immunosuppression with combined kidney and bone marrow transplantation: protocol optimization. Transplantation. 2020;104(7):1472-1482. PMID: 31634324 https://doi.org/10.1097/TP.0000000000003006

40. Kohrt HE, Pillai AB, Lowsky R, Strober S. NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol. 2010;40(7):18621869. PMID: 20583031 https://doi.org/10.1002/eji.201040394

41. Leventhal J, Miller J, Abecas sis M, Tollerud DJ, Ildstad ST. Evolving approaches of hematopoietic stem cell-based therapies to induce toler ance to organ transplants: the long road to tolerance. Clin Pharmacol Ther. 2013;93(1):36–45. PMID: 23212110 https://doi.org/10.1038/clpt.2012.201

42. Shaw BI, Ord JR, Nobuhara C, Luo X. Cellular therapies in solid organ allotransplantation: promise and pitfalls. Front Immunol. 2021;12:714723. PMID: 34526991 https://doi.org/10.3389/fimmu.2021.714723

43. Yang J, Brook MO, CarvalhoGaspar M, Zhang J, Ramon HE, Sayegh MH, et al. Allograft rejection mediated by memory T cells is resistant to regulation. Proc Natl Acad Sci USA. 2007;104(50):19954–19959. PMID: 18042727 https://doi.org/10.1073/pnas.0704397104

44. Francis RS, Feng G, Tha-In T, Lyons IS, Wood KJ, Bushell A. Induction of transplantation tolerance converts potential effector T cells into graft-protective regulatory T cells. Eur J Immunol. 2011;41(3):726–738. PMID: 21243638 https://doi.org/10.1002/eji.201040509

45. Wood KJ, Bushell A, Jones ND. Immunologic unresponsiveness to alloantigen in vivo: a role for regulatory T cells. Immunol Rev. 2011;241(1):119–132. PMID: 21488894 https://doi.org/10.1111/j.1600-065X.2011.01013.x

46. Feng G, Wood KJ, Bushell A. Interferon-gamma conditioning ex vivo generates CD25+ CD62L+ Foxp3+ regulatory T cells that prevent allograft rejection: potential avenues for cellular therapy. Transplantation. 2008;86(4):578–589. PMID: 18724229 https://doi.org/10.1097/TP.0b013e3181806a60

47. Page E, Kwun J, Oh B, Knechtle S. Lymphodepletional strategies in transplantation. Cold Spring Harb Perspect Med. 2013;3(7):a015511. PMID: 23818516 https://doi.org/10.1101/cshperspect.a015511

48. Orlando G, Hematti P, Stratta RJ, Burke GW, Di Cocco P, Pisani F, et al. Clinical operational tolerance after renal transplantation: current status and future challenges. Ann Surg. 2010;252(6):915–928. PMID: 21107102 https://doi.org/10.1097/SLA.0b013e3181f3efb0

49. Morris H, DeWolf S, Robins H, Sprangers B, LoCascio SA, Shonts BA, et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med. 2015;7(272):272ra10 PMID: 25632034 https://doi.org/10.1126/sci-translmed.3010760

50. Newell KA, Phippard D, Turka LA. Regulatory cells and cell signatures in clinical transplantation tolerance. Curr Opin Immunol. 2011;23(5):655–659. PMID: 21982510 https://doi.org/10.1016/j.coi.2011.07.008

51. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes vari ous autoimmune diseases. J Immunol. 1995;155(3):1151–1164. PMID: 7636184

52. Lin YJ, Hara H, Tai HC, Long C, Tokita D, Yeh P, et al. Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Transplantation. 2008;86(10):1452–1462. PMID: 19034017 https://doi.org/10.1097/TP.0b013e318188acb0

53. Veerapathran A, Pidala J, Beato F, Yu XZ, Anasetti C. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly. Blood. 2011;118(20):5671–5680. PMID: 21948174 https://doi.org/10.1182/blood-2011-02-337097

54. Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J. 2012;26(6):2253-2276. PMID: 22362896 https://doi.org/10.1096/fj.11-193672

55. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+regulatory T cells by TGFbeta induction of transcription factor Foxp3. J Exp Med. 2003;198(12):1875-1886. PMID: 14676299 https://doi.org/10.1084/jem.20030152

56. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J Exp Med. 2006;203(7):1701-1711. PMID: 16818678 https://doi.org/10.1084/jem.20060772

57. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and comple mentary events required for Treg cell development. Immunity. 2012;37(5):785–799. PMID: 23123060 https://doi.org/10.1016/j.immuni.2012.09.010

58. Mantel Py, Ouaked N, Ruckert B, Karagiannidis C, Welz R, Blaser K, et al. Molecular mechanisms underlying FOXP3 induction in human T cells. J Immunol. 2006;176(6):3593–3602. PMID: 16517728 https://doi.org/10.4049/jimmunol.176.6.3593

59. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–645. PMID: 19464986 https://doi.org/10.1016/j.immuni.2009.04.010

60. Li X, Xu H, Huang J, Luo D, Lv S, Lu X, et al. Dysfunctions, molecular mechanisms, and therapeutic strategies of regulatory t cells in rheumatoid arthritis. Front Pharmacol. 2021;12:716081. PMID: 34512345 https://doi.org/10.3389/fphar.2021.716081

61. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell extrinsic function of CTLA-4. Science. 2011;332(6029):600–603. PMID: 21474713 https://doi.org/10.1126/science.1202947

62. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ regu latory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–1362. PMID: 17982458 https://doi.org/10.1038/ni1536

63. O’Gorman WE, Dooms H, Thorne SH, Kuswanto WF, Simonds EF, Krutzik PO, et al. The initial phase of an immune response functions to activate regulatory T cells. J Immunol. 2009;183(1):332–339. PMID: 19542444 https://doi.org/10.4049/jimmunol.0900691

64. Mahnke K, Bedke T, Enk AH. Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell Immunol. 2007;250(1–2):1–13. PMID: 18313653 https://doi.org/10.1016/j.cellimm.2008.01.004

65. Syn NL, Teng MW, Mok TS, Soo R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–e741. PMID: 29208439 https://doi.org/10.1016/S1470-2045(17)30607-1

66. Schaier M, Seissler N, Schmitt E, Meuer S, Hug F, Zeier M, et al. DR(high+) CD45RA(–)-Tregs potentially affect the suppressive activity of the total Treg pool in renal transplant patients. PLoS One. 2012;7(3):e34208. PMID: 22470536 https://doi.org/10.1371/journal.pone.0034208

67. Yamaguchi T, Wing JB, Sakaguchi S. Two modes of immune suppression by Foxp3+ regulatory T cells under inflammatory or non-inflammatory conditions. Semin Immunol. 2011;23(6):424–430. PMID: 22055883 https://doi.org/10.1016/j.smim.2011.10.002

68. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353(22):2342–2351. PMID: 16319383 https://doi.org/10.1056/NEJMoa051907

69. Dijke IE, Velthuis JH, Caliskan K, Korevaar SS, Maat AP, Zondervan PE, et al. Intragraft FOXP3 mRNA expression reflects antidonor immune reactivity in cardiac allograft patients. Transplantation. 2007;83(11):1477–1484. PMID: 17565321 https://doi.org/10.1097/01.tp.0000264997.53153.8b

70. Schaier M, Seissler N, Becker LE, Schaefer SM, Schmitt E, Meuer S, et al. The extent of HLA-DR expression on HLA-DR(+) Tregs allows the identification of patients with clinically relevant borderline rejection. Transpl Int. 2013;26(3):290–299. PMID: 23279010 https://doi.org/10.1111/tri.12032

71. Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, et al. IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010;11(12):1093–1101. PMID: 20953201 https://doi.org/10.1038/ni.1952

72. Sullivan JA, AlAdra DP, Olson BM, McNeel DG, Burlingham WJ. Infectious tolerance as seen with 2020 vision: the role of IL-35 and extracellular vesicles. Front Immunol. 2020;11:1867. PMID: 32983104 https://doi.org/10.3389/fimmu.2020.01867

73. Hsu SM, Mathew R, Taylor AW, Stein-Streilein J. Ex-vivo tolerogenic F4/80(+) antigen-presenting cells (APC) induce efferent CD8(+) regulatory T cell-dependent suppression of experimental autoimmune uveitis. Clin Exp Immunol. 2014;176(1):37–48. PMID: 24266626 https://doi.org/10.1111/cei.12243

74. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–252. PMID: 9521319 https://doi.org/10.1038/32588

75. Broichhausen C, Riquelme P, Geissler EK, Hutchinson JA. Regulatory macrophages as therapeutic targets and therapeutic agents in solid organ transplantation. Curr Opin Organ Transplant. 2012;17(4):332–342. PMID: 22790067 https://doi.org/10.1097/MOT.0b013e328355a979

76. Hutchinson JA, Geissler EK. Now or never? The case for cell-based immunosuppression in kidney transplantation. Kidney Int. 2015;87(6):1116–1124. PMID: 25738251 https://doi.org/10.1038/ki.2015.50

77. Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol. 2012;30:1–22. PMID: 22136168 https://doi.org/10.1146/annurev-immunol-100311-102839

78. Andre S, Tough DF, Lacroix-Des mazes S, Kaveri SV, Bayry J. Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogene sis and therapeutic implications. Am J Pathol. 2009;174(5):1575–1587. PMID: 19349365 https://doi.org/10.2353/ajpath.2009.080987

79. Tang Q, Jeffrey, Bluestone JA. Regulatory T-cell therapy in transplantation: moving to the clinic. Cold Spring Harb Perspect Med. 2013;3(11):a015552. PMID: 24186492 https://doi.org/10.1101/cshperspect.a015552

80. Oberbauer R, Edinger M, Berlakovich G, Kalhs P, Worel N, Heinze G, et al. A prospective controlled trial to evaluate safety and efficacy of in vitro expanded recipient regulatory T cell therapy and tocilizumab together with donor bone marrow infusion in HLA-mismatched living donor kidney transplant recipi ents (Trex001). Front Med (Lausanne). 2021;7:634260. PMID: 33585521 https://doi.org/10.3389/fmed.2020.634260

81. Roemhild A, Otto NM, Moll G, Abou-El-Enein M, Kaiser D, Bold G, et al. Regulatory T cells for minimising immune suppression in kidney trans plantation: phase I/IIa clinical trial. BMJ. 2020;371:m3734. PMID: 33087345 https://doi.org/10.1136/bmj.m3734

82. Sawitzki B, Harden PN, Reinke P, Moreau A, Hutchinson JA, Game DS, et al. Regulatory cell therapy in kid ney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet. 2020;395(10237):1627-1639. PMID: 32446407 https://doi.org/10.1016/S0140-6736(20)30167-7

83. Sánchez-Fueyo A, Whitehouse G, Grageda N, Cramp ME, Lim TY, Romano M, et al. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation. Am J Transplant. 2020;20(4):1125–1136. PMID: 31715056 https://doi.org/10.1111/ajt.15700

84. Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol. 2021;51(1):39–55. PMID: 33275279 https://doi.org/10.1002/eji.201948131

85. Attias M, Al-Aubodah T, Piccirillo C. Mechanisms of human FoxP3+ Treg cell development and function in health and disease. Immunol. 2019;197(1):36–51. PMID: 30864147 https://doi.org/10.1111/cei.13290

86. Fritsche E, Volk HD, Reinke P, Abou-El-Enein M. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy. Trends Bio technol. 2020;38(10):1099–1112. PMID: 31982150 https://doi.org/10.1016/j.tibtech.2019.12.009

87. Slomovich S, Bell J, Clerkin KJ, Habal MV, Griffin GM, Raikhelkar JK, et al. Extracorporeal photopheresis and its role in heart transplant rejection: prophylaxis and treatment. Clin Transplant. 2021;35(7):e14333. PMID: 33914369 https://doi.org/10.1111/ctr.14333

88. Hachem R, Corris P. Extracorporeal photopheresis for bronchiolitis obliterans syndrome after lung transplantation. Transplantation. 2018;102(7):1059-1065. PMID: 29557913 https://doi.org/10.1097/TP.0000000000002168

89. Mazzoni A, Giampietro C, Bianco I, Grazzini T, Nencini C, Pileggi C, et al. Extracorporeal photopheresis and liver transplantation: Our experi ence and preliminary data. Transfus Apher Sci. 2017;56(4):515–519. PMID: 28774829 https://doi.org/10.1016/j.transci.2017.07.008

90. Kusztal M, Kłak R, Krajewska M, BoratyńskA M, Patrzałek D, Klinger M. Application of extracorporeal photo pheresis in kidney transplant recipi ents: technical considerations and procedure tolerance. Transplant Proc. 2011;43(8):2941–2942. PMID: 21996195 https://doi.org/10.1016/j.transproceed.2011.08.034

91. Whitehouse G, Gray E, Mastoridis S, Merritt E, Kodela E, Yang JHM, et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. Proc Natl Acad Sci USA. 2017;114(27):7083–7088. PMID: 28584086 https://doi.org/10.1073/pnas.1620835114


Рецензия

Для цитирования:


Кильдюшевский А.В., Мойсюк Я.Г., Митина Т.А., Кофиади И.А., Чуксина Ю.Ю. Вектор развития трансплантационной медицины: индукция иммунной толерантности или регуляция иммунного ответа? Трансплантология. 2022;14(2):195-209. https://doi.org/10.23873/2074-0506-2022-14-2-195-209

For citation:


Kildyushevsky A.V., Moysyuk Y.G., Mitina T.A., Kofiadi I.A., Chuksina Yu.Yu. The trend for transplant medicine development: induction of immune tolerance or regulation of immune response? Transplantologiya. The Russian Journal of Transplantation. 2022;14(2):195-209. https://doi.org/10.23873/2074-0506-2022-14-2-195-209

Просмотров: 83


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)