Иммунные механизмы в патогенезе острого перитонита
https://doi.org/10.23873/2074-0506-2023-15-1-89-97
Аннотация
Острое воспаление брюшины – перитонит – часто развивается после ранения полых внутренних органов, некроза кишечника, несостоятельности анастомоза или опухолевых процессов. Последующее микробное загрязнение брюшной полости приводит к инфекции, в ответ на которую активируются иммунные механизмы. Патогенез воспалительных процессов в брюшной полости и их особенности во многом определены строением и функциональными возможностями брюшины, а также ее тесной связью с сальником. В разрешении перитонита важным моментом является сохранение баланса цитокинов, активности иммуноцитов и комплемента, функционирующих в иммунных лимфоидных скоплениях брюшины и сальника, и их содружественное действие в ходе воспаления. В обзоре представлены данные о строении и функции брюшины и сальника, роли нейтрофильного, макрофагального, лимфоцитарного звеньев иммунной системы, а также про- и противовоспалительных цитокинов и комплемента в развитии и прекращении острого воспаления в брюшной полости.
Об авторе
Г. В. БулаваРоссия
Галина Владимировна Булава, д-р мед. наук, научный консультант лаборатории клинической иммунологии
129090, Россия, Москва, Большая Сухаревская пл., д. 3
Список литературы
1. Hall JC, Heel KA, Papadimitriou JM, Platell C. The pathobiology of peritonitis. Gastroenterology. 1998;114(1):185–196. PMID: 9428232 https://doi.org/10.1016/s0016-5085(98)70646-8
2. Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol. 2021;109(4):717–729. PMID: 32881077 https://doi.org/10.1002/JLB.5MIR0720-271RR
3. Di Paolo N, Nicolai GA, Garosi G. The peritoneum: from histological studies to mesothelial transplant through animal experimentation. Perit Dial Int. 2008;28(Suppl 5):S5–9. PMID: 19008542
4. Schäffler A, Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31(6):228–235. PMID: 20434953 https://doi.org/10.1016/j.it.2010.03.001
5. Kaminski DA, Randall Troy D. Adaptive immunity and adipose tissue biology. Trends Immunol. 2010;31(10):384–390. PMID: 20817556 https://doi.org/10.1016/j.it.2010.08.001
6. Jackson-Jones LH, Bénézech C. FALC stromal cells define a unique immunological niche for the surveillance of serous cavities. Curr Opin Immun. 2020;64:42-49. PMID: 32353646 https://doi.org/10.1016/j.coi.2020.03.008
7. Cruz-Migoni S, Caamaño J. Fatassociated lymphoid clusters in inflammation and immunity. Front Immunol. 2016;7:612. PMID: 28066422 https://doi.org/10.3389/fimmu.2016.00612 eCollection 2016.
8. Blackburn SC, Stanton MP. Anatomy and physiology of the peritoneum. Semin Pediatr Surg. 2014;23(6):326–330. PMID: 25459436 https://doi.org/10.1053/j.sempedsurg.2014.06.002
9. Nedeva C. Inflammation and Cell Death of the innate and adaptive immune system during sepsis. Biomolecules. 2021;11(7):1011. PMID: 34356636 https://doi.org/10.3390/biom11071011
10. Meza-Perez S, Randall TD. Immunological functions of the omentum. Trends Immunol. 2017;38(7):526–536. PMID: 28579319 https://doi.org/10.1016/j.it.2017.03.002
11. Morrison R. Remarks On some functions of the omentum. British Med J. 1906;1(2350):76–78. PMID: 20762478 https://doi.org/10.1136/bmj.1.2350.76
12. Bénézech C, Luu NT, Walker JA, Kruglov AA, Loo Y, Nakamura K, et al. Inflammation-induced formation of fatassociated lymphoid clusters. Nat Immunol. 2015;16(8):819–828. PMID: 26147686 https://doi.org/10.1038/ni.3215
13. Barth MW, Hendrzak JA, Melnicoff MJ, Morahan PS. Review of the macrophage disappearance reaction. J Leukoc Biol. 1995;57(3):361–367. PMID: 7884305 https://doi.org/10.1002/jlb.57.3.361
14. Ha SA, Tsuji M, Suzuki K, Meek B, Yasuda N, Kaisho T, et al. Regulation of B1 cell migration by signals through Toll-like receptors. J Exp Med. 2006;203(11):2541–2550. PMID: 17060475 https://doi.org/10.1084/jem.20061041
15. Cochen CA, Shea AA, Heffron CL, Schmelz EM, Roberts PC. Intra-abdominal fat depots represent distinct immunomodulatory microenvironments: a murine model. PLos One. 2013;8(6):e66477. PMID: 23776677 https://doi.org/10.1371/journal.pone.0066477
16. Ansel KM, Harris RB, Cyster JG. CXCL13 is required for B1 cell homing, natural antibody production, and body cavity immunity. Immunology. 2002;16(1):67–76. PMID: 11825566 https://doi.org/10.1016/s1074-7613(01)00257-6
17. Heel KA, Hall JC. Peritoneal defences and peritoneum-associated lymphoid tissue. Br J Surg. 1996;83(8):1031–1036. PMID: 8869299 https://doi.org/10.1002/bjs.1800830804
18. Cailhier JF, Partolina M, Vuthoori S, Wu S, Ko K, Watson S, et al. Conditional macrophage ablation demonstrates that resident macrophages initiate acute peritoneal inflammation. J Immunol. 2005;174(4):2336–2342. PMID: 15699170 https://doi.org/10.4049/jimmunol.174.4.2336
19. Ghosn EE, Cassado AA, Govoni GR, Fukuhara T, Yang Y, Monack DM, et al. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc Natl Acad Sci USA. 2010;107(6):2568–2573. PMID: 20133793 https://doi.org/10.1073/pnas.0915000107
20. Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell. 2014;157(4):832–844. PMID: 24792964 https://doi.org/10.1016/j.cell.2014.04.016
21. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N, Hartmann K, et al. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood. 2013;121(24):4930–4937. PMID: 23645836 https://doi.org/10.1182/blood-2013-02-486217
22. Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol. 2015;36(9):547–555. PMID: 26297103 https://doi.org/10.1016/j.it.2015.07.007
23. Sampaio AL, Zahn G, Leoni G, Vossmeyer D, Christner C, Marshall JF, et al. Inflammation-dependent alpha 5 beta 1 (very late antigen-5) expression on leukocytes reveals a functional role for this integrin in acute peritonitis. J Leukoc Biol. 2010;87(5):877–884. PMID: 20097849 https://doi.org/10.1189/jlb.1009670
24. Mayadas TN, Cullere X, Lowell CA. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218. PMID: 24050624 https://doi.org/10.1146/annurev-pathol-020712-164023
25. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. PMID: 15771570 https://doi.org/10.1146/annurev.immunol.23.021704.115653
26. Sengeløv H, Kjeldsen L, Borregaard N. Control of exocytosis in early neutrophil activation. J Immunol. 1993;150(4):1535–1543. PMID: 8381838
27. Basu S, Hodgson G, Katz M, Dunn AR. Evaluation of role of G-CSF in the production, survival, and release of neutrophils from bone marrow into circulation. Blood. 2002;100(3):854–861. PMID: 12130495 https://doi.org/10.1182/blood.v100.3.854
28. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. Neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459–489. PMID: 22224774 https://doi.org/10.1146/annurev-immunol-020711-074942
29. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011;11(8):519–531. PMID: 21785456 https://doi.org/10.1038/nri3024
30. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012–2020. PMID: 1382715
31. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318–324. PMID: 20620114 https://doi.org/10.1016/j.it.2010.05.006
32. Stoermann B, Kretschmer K, Düber S, Weiss S. B-1a cells are imprinted by the microenvironment in spleen and peritoneum. Eur J Immunol. 2007;37(6):1613–1620. PMID: 17492803 https://doi.org/10.1002/eji.200636640
33. Choi YS, Dieter JA, Rothaeusler K, Luo Z, Baumgarth N. B-1 cells in the bone marrow are a significant source of natural IgM. Eur J Immunol. 2012;42(1):120–129. PMID: 22009734 https://doi.org/10.1002/eji.201141890
34. Jackson-Jones LH, Bénézech C. Control of innate-like B cell location for compartmentalised IgM production. Curr Opin Immunol. 2018;50:9–13. PMID: 29078198 https://doi.org/10.1016/j.coi.2017.10.006
35. Baumgarth N. Innate-like B cells and their rules of engagement. Adv Exp Med Biol. 2013;785:57–66. PMID: 23456838 https://doi.org/10.1007/978-1-4614-6217-0_7
36. Amezcua Vesely MC, Schwartz M, Bermejo DA, Montes CL, Cautivo KM, Kalergis AM, et al. FcgammaRIIb and BAFF differentially regulate peritoneal B1 cell survival. J Immunol. 2012;188(10):4792–4800. PMID: 22516957 https://doi.org/10.4049/jimmunol.1102070
37. Dobenecker MW, Marcello J, Becker A, Rudensky E, Bhanu NV, Carrol T, et al. The catalytic domain of the histone methyltransferase NSD2/MMSET is required for the generation of B1 cells in mice. FEBS Lett. 2020;594(20):3324–3337. PMID: 32862441 https://doi.org/0.1002/1873-3468.13903
38. Zhong X, Gao W, Degauque N, Bai C, Lu Y, Kenny J, et al. Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur J Immunol. 2007;37(9):2400–2404. PMID: 17683116 https://doi.org/10.1002/eji.200737296
39. Newson J, Stables M, Karra E, ArceVargas F, Quezada S, Motwani M, et al. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood. 2014;124(11):1748–1764. PMID: 25006125 https://doi.org/10.1182/blood-2014-03-562710
40. Buckley CD, Gilroy DW, Serhan CN. Proresolving lipid mediators and mechanisms in the resolution of acute inflammation. Immunity. 2014;40(3):315–327. PMID: 24656045 https://doi.org/10.1016/j.immuni.2014.02.009
41. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907–917. PMID: 26287597 https://doi.org/10.1038/ni.3253
42. Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science. 2017;356(6337):513–519. PMID: 28473584 https://doi.org/10.1126/science.aal3535
43. Moldawer LL, Gelin J, Schersten T, Lundholm KG. Circulating interleukin 1 and tumor necrosis factor during inflammation. Am J Physiol. 1987;253(6, Pt2):R922–R928. PMID: 3501249 https://doi.org/10.1152/ajpregu.1987.253.6.R922
44. Echtenacher B, Falk W, Männel DN, Krammer PH. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol. 1990;145(11):3762–3766. PMID: 2246512
45. Wellmer A, Gerber J, Ragheb J, Zysk G, Kunst T, Smirnov A, et al. Effect of deficiency of tumor necrosis factor alpha or both of its receptors on Streptococcus pneumoniae central nervous system infection and peritonitis. Infect Immun. 2001;69(11):6881–6886. PMID: 11598062 https://doi.org/10.1128/IAI.69.11.6881-6886.2001
46. Moreno SE, Alves-Filho JC, Alfaya TM, da Silva JS, Ferreira SH, Liew FY. IL-12, but not IL-18, is critical to neutrophil activation and resistance to polymicrobial sepsis induced by cecal ligation and puncture. J Immunol. 2006;177(5):3218–3224. PMID: 16920961 https://doi.org/10.4049/jimmunol.177.5.3218
47. Entleutner M, Traeger T, Westerholt A, Holzmann B, Stier A, Pfeffer K, et al. Impact of interleukin-12, oxidative burst, and iNOS on the survival of murine fecal peritonitis. Int J Colorectal Dis. 2006;21(1):64–70. PMID: 15756596 https://doi.org/10.1007/s00384-004-0707-0
48. Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. JAMA. 1994;271(23):1836–1843. PMID: 8196140.
49. Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. Lancet. 1998;351(9107):929–933. PMID: 9734938
50. Zisman DA, Kunkel SL, Strieter RM, Gauldie J, Tsai WC, Bramson J, et al. Anti-interleukin-12 therapy protects mice in lethal endotoxemia but impairs bacterial clearance in murine Escherichia coli peritoneal sepsis. Shock. 1997;8(5):349–356. PMID: 9361345 https://doi.org/10.1097/00024382-199711000-00006
51. Steinhauser ML, Hogaboam CM, Lukacs NW, Strieter RM, Kunkel SL. Multiple roles for IL-12 in a model of acute septic peritonitis. J Immunol. 1999;162(9):5437–5443. PMID: 10228022.
52. Latifi SQ, O'Riordan MA, Levine AD. Interleukin-10 controls the onset of irreversible septic shock. Infect Immun. 2002;70(8):4441–4446. PMID: 12117955 https://doi.org/10.1128/IAI.70.8.4441-4446.2002
53. Sewnath ME, Olszyna DP, Birjmohun R, ten Kate FJW, Gouma DJ, van der Poll T. IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance. J Immunol. 2001;166(10):6323–6331. PMID: 11342656 https://doi.org/10.4049/jimmunol.166.10.6323
54. Rongione AJ, Kusske AM, Ashley SW, Reber HA, McFadden DW. Interleukin-10 prevents early cytokine release in severe intra-abdominal infection and sepsis. J Surg Res. 1997;70(2):107–112. PMID: 9237883 https://doi.org/10.1006/jsre.1997.5071
55. Rongione AJ, Kusske AM, Kwan K, Ashley SW, Reber HA, McFadden DW. Interleukin-10 protects against lethality of intra-abdominal infection and sepsis. J Gastrointest Surg. 2000;4(1):70–76. PMID: 10631365 https://doi.org/10.1016/s1091-255x(00)80035-9
56. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861–3885. PMID: 27180275 https://doi.org/10.1007/s00018-016-2268-0
57. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–462. PMID: 26982353 https://doi.org/10.1016/j.immuni.2016.02.015
58. Wirtz S, Tubbe I, Galle PR, Schild HJ, Birkenbach M, Blumberg RS, et al. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med. 2006;203(8):1875–1881. PMID: 16880260 https://doi.org/10.1084/jem.20060471
59. Liew PX, Kubes P. The neutrophil's role during health and disease. Physiol Rev. 2019;99(2):1223–1248. PMID: 30758246 https://doi.org/10.1152/physrev.00012.2018
60. Celik I, Stover C, Botto M, Thiel S, Tzima S, Kunkel D, et al. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis. Infect Immun. 2001;69(12):7304–7309. PMID: 11705901 https://doi.org/10.1128/IAI.69.12.7304-7309.2001
61. Windbichler M, Echtenacher B, Hehlgans T, Jensenius JC, Schwaeble W, Mannel DN. Involvement of the lectin pathway of complement activation in antimicrobial immune defense during experimental septic peritonitis. Infect Immun. 2004;72(9):5247–5252. PMID: 15322019 https://doi.org/10.1128/IAI.72.9.5247-5252.2004
62. Boes M, Prodeus AP, Schmidt T, Carroll MC, Chen JZ. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J Exp Med. 1998;188(12):2381–2386. PMID: 9858525 https://doi.org/10.1084/jem.188.12.2381
63. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med. 1993;119(8):771–778. PMID: 8379598 https://doi.org/10.7326/0003-4819-119-8-199310150-00001
64. Riedemann NC, Neff TA, Guo RF, Bernacki KD, Laudes IJ, Sarma JV, et al. Protective effects of IL-6 blockade in sepsis are linked to reduced c5a receptor expression. J Immunol. 2003;170(1):503–507. PMID: 12496437 https://doi.org/10.4049/jimmunol.170.1.503
65. Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, et al. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest. 2005;115(9):2444–2453. PMID: 16127466 https://doi.org/10.1172/JCI25208
66. Ярилин А.А. Иммунология. Москва: ГЭОТАР-Медиа; 2010.
67. Medzhitov R, Schneider DS, Soares MP. Disease tolerance as a defense strategy. Science. 2012;335(6071):936–941. PMID: 22363001 https://doi.org/10.1126/science.1214935
68. Борисов А.Г., Савченко А.А., Черданцев Д.В., Здзитовецкий Д.Э., Первова О.В., Кудрявцев И.В. и др. Типы иммунного реагирования при распространенном гнойном перитоните (с комментарием). Хирургия. Журнал им. Н.И. Пирогова. 2016;(9):28–34. https://doi.org/10.17116/hirurgia2016928-34
Рецензия
Для цитирования:
Булава Г.В. Иммунные механизмы в патогенезе острого перитонита. Трансплантология. 2023;15(1):89-97. https://doi.org/10.23873/2074-0506-2023-15-1-89-97
For citation:
Bulava G.V. Immune mechanisms in the pathogenesis of acute peritonitis G.V. Bulava. Transplantologiya. The Russian Journal of Transplantation. 2023;15(1):89-97. https://doi.org/10.23873/2074-0506-2023-15-1-89-97