Preview

Transplantologiya. The Russian Journal of Transplantation

Advanced search

Using of magnetic particles for fi xing of isolated cells in subretinal transplantation

Abstract

Purpose: This study focuses on the development of the method of introduction of magnetic microparticles in the cytoplasm of HEK-293 cell line with their subsequent fixation under the retina of the eye.

Materials and Methods. Magnetic particles (d = 2,8 mm) were treated with pluronic and injected into the cytoplasm of HEK-293 cell line, expressing GFP. The surgery was made under general anesthesia. HEK-293 containing magnetic particles were injected into the subretinal space of rabbit eyes (eyes 96, 48 rabbits) using original dosing device. In the experimental group (48 eyes, 24 rabbits) we fixed episcleral magnetic implant to hold cells in local place. In the control group (48 eyes, 24 rabbit) magnetic implant was not fixed. After the surgery all animals were examined using biomicroscopy, ophthalmoscopy with photographic recording, ultrasound, computed tomography and morphological study in certain terms (1, 3, 5, 7, 14, 21 day and 1 month).

Results: The introduction of the magnetic particles into the cytoplasm of HEK 293 cell line has no effect on cell viability. HEK-293 containing magnetic particles remains in the place of injection during 21 days in rabbit eyes, where the magnetic implants were fixed (in control group during 3 days).

Conclusions: Using of cells containing magnetic particles with fixation of the magnetic implant can be a promising method for cell therapy for the treatment of retinal diseases.

 

About the Authors

A. A. Temnov
N.V. Sklifosovsky Research Institute for Emergency Medicine of Moscow Healthcare Department, Moscow
Russian Federation


Yu. A. Belyy
«The Interbranch Scientific-Technical Complex «Eye microsurgery» named after academician Fedorov» of the Ministry of Health of Russia, Kaluga
Russian Federation


S. A. Mirgorodskaya
«The Interbranch Scientific-Technical Complex «Eye microsurgery» named after academician Fedorov» of the Ministry of Health of Russia, Moscow
Russian Federation


A. D. Semenov
«The Interbranch Scientific-Technical Complex «Eye microsurgery» named after academician Fedorov» of the Ministry of Health of Russia, Moscow
Russian Federation


A. V. Shatskikh
«The Interbranch Scientific-Technical Complex «Eye microsurgery» named after academician Fedorov» of the Ministry of Health of Russia, Moscow
Russian Federation


A. V. Revishchin
Institute of gene biology of Russian Academy of Sciences, Moscow
Russian Federation


G. V. Pavlova
Institute of gene biology of Russian Academy of Sciences, Moscow
Russian Federation


N. N. Kust
Institute of gene biology of Russian Academy of Sciences, Moscow
Russian Federation


A. N. Sklifas
Institute of сell biophysics Russian Academy of Sciences, Pushchino
Russian Federation


References

1. Chaum, E. Retinal neuroprotection by growth factors: a mechanistic perspective / E. Chaum // J. Cell Biochem. – 2003 – Vol. 88, N.1. – P. 57–75.

2. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light / M.M. LaVail, K. Unoki, D. Yasumura [et al.] // Proc. Natl. Acad. Sci. – 1992 – Vol. 89, N.23. – P. 11249–11253.

3. Protection of mouse photoreceptors by survival factors in retinal degenerations / M.M. LaVail, D. Yasumura, M.T. Matthes[et al.] // Invest. Ophthalmol. Vis. Sci. – 1998. – Vol. 39, N.3. – P. 592–602.

4. Molecular mechanisms of lightinduced photoreceptor apoptosis and neuroprotection for retinal degeneration / A. Wenzel, C. Grimm, M. Samardzija [et al.] // Prog. Ret. Eye Res. – 2005. – Vol. 24, N.2. – P. 275–306.

5. Bennett, J. Gene therapy for retinitis pigmentosa / J. Bennett // Curr. Opin.Mol. Ther. – 2000. – Vol. 2, N.4. – P. 420–425.

6. Borras, T. Recent developments in ocular gene therapy / T. Borras // Exp. Eye Res. – 2003. – Vol. 76, N.6. – P. 643–652.

7. Hauswirth, W. Retinal Gene Therapy 1998: Summary of a Workshop / W. Hauswirth, R. McInnes // Mol. Vis. – 1998. – Vol.4. – P.11.

8. Hermens, W.T. Viral vectors, tools for gene transfer in the nervous system / W.T. Hermens, J. Verhaagen // Prog. Neurobiol. – 1998. – Vol. 55, N.4. – P. 399–432.

9. Isenmann, S. How to keep injured CNS neurons viable – strategies for neuroprotection and gene transfer to retinal ganglion cells / S. Isenmann, C. Schmeer, A. Kretz // Mol. Cell Neurosci. – 2004. – Vol. 26, N.1. – P. 1–16.

10. Martin, K.R. Gene delivery to the eye using adeno-associated viral vectors / K.R. Martin, R.L. Klein, H.A. Quigley // Methods. – 2002. – Vol. 28, N.2. – P. 267–275.

11. Surace, E.M. Adeno-associated viral vectors for retinal gene transfer / E.M. Surace, A. Auricchio // Prog. Retin. Eye Res. – 2003. – Vol. 22, N.6. – P. 705–719.

12. Aramant, R.B. Progress in retinal sheet transplantation / R.B. Aramant, M.J. Seiler // Prog. Retin. Eye Res. – 2005. – Vol. 23, N.5. – P. 474–494.

13. Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells / E. Banin, A. Obolensky, M. Idelson [et al.] // Stem Cells. – 2006. – Vol. 24, N.2. – P. 246–257.

14. Crystallin--b2-overexpressing NPCs support the survival of injured retinal ganglion cells and photoreceptors in rats / M.R. Böhm, S. Pfrommer, C. Chiwitt [et al.] // Invest. Ophthalmol. Vis. Sci. – 2012. – Vol. 53, N.13. – P. 8265-8279.

15. Cramer, A.O. Translating induced pluripotent stem cells from bench to bedside: application to retinal deceases / A.O. Cramer, R.E. McLaren // Curr. Gene Ther. – 2013. – Vol. 13, N.2. – Р. 139–151.

16. Das, A.M. Stem cell therapy for retinal degeneration: retinal neurons from heterologous sources / A.M. Das, X. Zhao, I. Ahmad // Semin. Ophthalmol.- 2005. – Vol. 20, N.1. – P. 3–10.

17. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells / H. Ikeda, F. Osakada, K. Watanabe [et al.] // Proc. Natl. Acad. Sci. – 2005. – Vol. 102, N.32. – P. 11331–11336.

18. Klassen, H. Stem cells and retinal repair / H. Klassen, D.S. Sakaguchi, M.J. Young // Prog. Retin. Eye Res. – 2004. – Vol. 23, N.2. - P. 149–181.

19. Availability of pre- and pro-regions of transgenic GDNF affects the ability to induce axonal sprout growth / N. Kust, D. Panteleev, I. Mertsalov [et al.]// Mol Neurobiol. – 2014. –[Epub ahead of print].

20. Cell transplantation as a treatment for retinal disease / R.D. Lund, A.S. Kwan,D.J. Keegan [et al.] // Prog. Retin. Eye Res. – 2001. – Vol. 20, N.4. – P. 415–449.

21. Retinal transplantation: progress and problems in clinical application / R.D. Lund, S.J. Ono, D.J. Keegan, J.M. Lawrence // J. Leukoc. Biol. – 2003. – Vol. 74, N.2. – P. 151–160.

22. Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter / Amar L., Desclaux M., Faucon-Biguet N. [et al.] // Nucleic Acids Res.-2006. – Vol. 34, N.5. – P. 37.

23. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site / T. Kanno, H. Yamamoto, T. Yaguchi [et al.] // J. Lipid Res. – 2006. – Vol.47, N.6. – P. 1146–1156.

24. In vivo trafficking and targeted delivery of magnetically labeled stem cells / A.S. Arbab, E.K. Jordan, L.B. Wilson [et al.] // Hum Gene Ther. – 2004. – Vol. 15, N.4. – P. 351–360.

25. Using a neodymium magnet to targe delivery of ferumoxide-labeled human neural stem cells in a rat model of focal cerebral ischemia / M. Song, Y.J. Kim, Y.H. Kim [et al.] // Hum. Gene Ther. – 2010. – Vol. 21, N.5. – P. 603-610.

26. Magnetic tagging increases delivery of circulating progenitors in vascular injury / P.G. Kyrtatos, P. Lehtolainen, M. Junemann-Ramirez [et al.]// JACC Cardiovasc. Interv. – 2009. – Vol. 2, N. 8. – P. 794-802.

27. Thickness sensing of hMSCs on collagen gel directs stem cell fate / W.S. Leong, C.Y. Tay, H. Yu [et al.] // Biochem. Biophys. Res. Commun. – 2010. – Vol. 401, N.2. – P. 287–292.

28. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles / A. Yanai, U.O. Häfeli, A.L. Metcalfe [et al.] // Cell Transplant. – 2012. – Vol. 21, N.6. – Р. 1137–1148.

29. Intraocular gene transfer of ciliary neurotrophic factor prevents death and increases responsiveness of rod photoreceptors in the retinal degeneration slow mouse / M. Cayouette, D. Behn, M. Sendtner [et al.] // J. Neurosci. – 1998. – Vol. 18, N.22. – P. 9282–9293.

30. Hoffman, L.M. Cell-mediated immune response and stability of intraocular transgene expression after adenovirusmediated delivery / L.M. Hoffman, A.M. Maguire, J. Bennett // Invest. Ophthalmol. Vis. Sci. – 1997. – Vol. 38, N.11. – P. 2224–2233.

31. Immune responses limit adenovirally mediated gene expression in the adult mouse eye / M.B. Reichel, R.R. Ali, A.J. Thrasher [et al.] // Gene Ther. – 1998. – Vol. 5, N.8. – P. 1038–1046.


Review

For citations:


Temnov A.A., Belyy Yu.A., Mirgorodskaya S.A., Semenov A.D., Shatskikh A.V., Revishchin A.V., Pavlova G.V., Kust N.N., Sklifas A.N. Using of magnetic particles for fi xing of isolated cells in subretinal transplantation. Transplantologiya. The Russian Journal of Transplantation. 2014;(4):12-20. (In Russ.)

Views: 598


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2074-0506 (Print)
ISSN 2542-0909 (Online)