Blood pressure monitoring during liver transplantation: the method of measurement does matter
https://doi.org/10.23873/2074-0506-2019-11-2-116-127
Abstract
Introduction. Accurate blood pressure (BP) measurements are the mainstay for the efficient management of abrupt changes of hemodynamics and perfusion during orthotopic liver transplantation (OLT).
Material and methods. The prospective study included 39 patients. We compared the BP values measured in the femoral and radial arteries during the different phases of the OLT.
Results. The central systolic arterial pressure (SAP) and mean arterial pressure (MAP) measured invasive in the femoral artery were significantly higher than those measured in the peripheral artery during the anhepatic phase (95.1±10.6 vs. 84.5±9.9 mm Hg, and 66±8.8 vs. 59.7±7.1 mm Hg, respectively), after 5 minutes of reperfusion (91.1±17.3 vs. 78.5±18.4 mm Hg, and 63.9±13.1 vs. 57.7±13.6 mm Hg, respectively), and after 15 minutes of reperfusion (102.2±16.8 vs. 88.1±14.4 mm Hg, and 67.7±10.7 vs. 62.5±10.4 mm Hg, respectively). We found a strong correlation between the differences of SAP and MAP and the dose of norepinephrine administered during the anhepatic phase (r=0.76 and r=0.77 for SAP and MAP, respectively), and after 5 minutes of reperfusion (r=0.71 and r=0.52 for SAP and MAP, respectively). The difference between central and peripheral BPs after 15 minutes of reperfusion mainly depended on the changes in the potassium concentration (r=0.55 for SAP and MAP) and base deficiency (r=0.73 and r=0.82 for SAP and MAP, respectively).
Conclusion. Thus, it was proved that the invasive measurement of BP in the femoral artery is a more accurate method compared with that in the radial artery as it is less exposed to high doses of vasopressors and variations in the acid-base state during OLT.
About the Authors
M. L. KatinBelarus
Head of Anesthesiology and Intensive Care Unit No. 2,
8 Semashko St., Minsk, 220045
A. M. Dzyadz`ko
Belarus
Dr. Med. Sci., Head of Anesthesiology and Intensive Care Department,
8 Semashko St., Minsk, 220045
M. Yu. Gurova
Belarus
Head of Anesthesiology and Intensive Care Unit No. 5,
8 Semashko St., Minsk, 220045
O. O. Rummo
Belarus
Corr. Member of NAS of Republic of Belarus, Prof., Dr. Med. Sci., Director of Minsk Scientific and Practical Center of Surgery, Transplantation, and Hematology,
8 Semashko St., Minsk, 220045
References
1. Schumann R., Mandell M.S., Mercaldo N. et al. Anesthesiа for liver transplantation in United States academic centers: intraoperative practice. J. Clin. Anesth. 2013;25(7):542–550. PMID:23994704 DOI:10.1016/j.jclinane.2013.04.017
2. Frezza E.E., Mezghebe H. Indications and complications of arterial catheter use in surgical or medical intensive care units. Analysis of 4932 patients. Am. Surg. 1998;64(2):127–131. PMID:9486883
3. Dorman T., Breslow M.J., Lipsett P.A., et al. Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit. Care Med. 1998; 26(10):1646–1649. PMID:9781720 DOI:10.1097/00003246-199810000-00014
4. Stern D.H., Gerson J.I., Allen F.B., Parker F.B. Can we trust the direct radial artery pressure immediately following cardiopulmonary bypass? Anesthesiology. 1985;62(5):557–561. PMID:3994020 DOI:10.1097/00000542-198505000-00002
5. Pauca A.L., Hudspeth A.S., Wallenhaupt S.L., et al. Radial artery-to-aorta pressure difference after discontinuation of cardiopulmonary bypass. Anesthesiology. 1989;70(6):935–941. PMID:2729634 DOI:10.1097/00000542-198906000-00009
6. Dorman T., Breslow M.J., Lipsett P.A., et al. Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit. Care Med. 1998;26(10):1646–1649. PMID:9781720 DOI:10.1097/00003246-199810000-00014
7. Acosta F., Sansano T., Beltran R., et al. Is femoral and radial artery pressure different during reperfusion in liver transplantation? Transplant. Proc. 2000;32(8):2647. PMID:11134741 DOI:10.1016/S0041-1345(00)01821-2
8. Meirelles Júnior R.F., Salvalaggio P., Rezende M.B., et al. Liver transplantation: history, outcomes and perspectives. Einstein (Sao Paulo). 2015;13(1):149–152. PMID:25993082 DOI:10.1590/S1679-45082015RW3164
9. Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–310. PMID:2868172 10. Albers I., Hartmann H., Bircher J., Creutzfeldt W. Superiority of the ChildPugh classification to quantitative liver function tests for assessing prognosis of liver cirrhosis. Scand. J. Gastroenterol. 1989;24(3):269–276. PMID:2734585
10. Remington J.W., Wood E.H. Formation of peripheral pulse contour in man. J. Appl. Physiol. 1956;9(3):433– 442. PMID:13376469 DOI:10.1152/jappl.1956.9.3.433
11. Manecke G.R. Jr., Parimucha M., Stratmann G., et al. Deep hypothermic circulatory arrest and the femoral-toradial arterial pressure gradient. J. Cardiothorac. Vasc. Anesth. 2004;18(2):175– 179. PMID:15073707
12. Riley L.E., Chen G.J., Latham H.E. Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press. Monit. 2017;22(4):202–207. PMID:28379881 DOI:10.1097/MBP.0000000000000258
13. Kim W.Y., Jun J.H., Huh J.W., et al. Radial to Femoral Arterial Blood Pressure Differences in Septic Shock Patients Receiving High-Dose Norepinephrine Therapy. Shock. 2013;40(6):527–531. DOI:10.1097/SHK.0000000000000064
14. Rivers E.P., Lozon J., Enriquez E., et al. Simultaneous radial, femoral, and aortic arterial pressures during human cardio-pulmonary resuscitation. Crit. Care Med. 1993;21(6):878–883. PMID:8504656
15. Fuda G., Denault A., Deschamps A., et al. Risk Factors Involved in Centralto-Radial Arterial Pressure Gradient During Cardiac Surgery. Anesth. Analg. 2016;122(3):624–632. PMID:26599795 DOI:10.1213/ANE.0000000000001096
16. Arnal D., Garutti I., Perez-Peña J., et al. Radial to femoral arterial blood pressure differences during liver transplantation. Anaesthesia. 2005;60(8):766–771. PMID:16029225 DOI:10.1111/j.1365-2044.2005.04257.x
17. Shin Y.H., Kim H.Y., Kim Y.R., et al. The comparison of femoral and radial arterial blood pressures during pediatric liver transplantation. Transplant. Proc. 2013;45(5):1924–1927. PMID:23769074 DOI:10.1016/j.transproceed.2012.08.025
18. Shin B.S., Kim G.S., Ko J.S., et al. Comparison of femoral arterial blood pressure with radial arterial blood pressure and noninvasive upper arm blood pressure in the reperfusion period during liver transplantation. Transplant. Proc. 2007;39(5):1326–1328. PMID:17580132 DOI:10.1016/j.transproceed.2007.02.075
19. Mohr R., Lavee J., Goor D.A. Inaccuracy of radial artery pressure measurement after cardiac operations. J. Thorac. Cardiovasc. Surg. 1987;94(2):286–290. PMID:3497310
20. Seto A.H., Abu-Fadel M.S., Sparling J.M., et al. Real-time ultrasound guidance facilitates femoral arterial access and reduces vascular complications: FAUST (Femoral Arterial Access With Ultrasound Trial). JACC Cardiovasc. Interv. 2010;3(7):751–758. DOI:10.1016/j.jcin.2010.04.015
21. Sobolev M., Slovut D.P., Lee Chang A., et al. Ultrasound-Guided Catheterization of the Femoral Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Invasive Cardiol. 2015;27(7):318–323. PMID:26136279
Review
For citations:
Katin M.L., Dzyadz`ko A.M., Gurova M.Yu., Rummo O.O. Blood pressure monitoring during liver transplantation: the method of measurement does matter. Transplantologiya. The Russian Journal of Transplantation. 2019;11(2):116-127. https://doi.org/10.23873/2074-0506-2019-11-2-116-127